Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T11:53:46.024Z Has data issue: false hasContentIssue false

Formation of Metallic Nanoclusters in SiC by MeV Ion Implantation

Published online by Cambridge University Press:  10 February 2011

D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762, USA
E. K. Williams
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762, USA
A. Elsamadicy
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762, USA
B. Gasic
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762, USA
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
D. K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
M. A. George
Affiliation:
Dept. of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35802, USA
M. A. Ayoub
Affiliation:
Dept. of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35802, USA
David J. Larkin
Affiliation:
NASA Lewis Research Center, Cleveland, OH, 44135, USA
Get access

Abstract

We present the results of our investigation of producing nanoclusters of gold, silver, copper and tin in 6H-SiC. This is accomplished by implanting 1.0 MeV Au, 2.0 MeV Ag, 2.0 MeV Cu, and 160 keV Sn into the Si face of SiC at room or elevated temperature followed by annealing at various temperatures. Using optical absorption spectrophotometry, we determined the location of the absorption band for each metal nanocluster in SiC. Elevated temperature implantation reduces optical absorption due to ion implantation induced defects. Using the Mie theory, we determined the index of refraction in the implanted volume.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Connor, J. R., Smiltens, J., Silicon Carbide, A High-Temperature Semiconductor (Pergamon, NY, 1960).Google Scholar
2. Harris, G. L., Properties of Silicon Carbide (INSPEC, London, 1995).Google Scholar
3. Shenai, K., Scott, R. S. and Baliga, B. J., IEEE Trans. Elec. Dev. 36 (1989) 1811.10.1109/16.34247Google Scholar
4. Arnold, G. W., J. Appl. Phys. 46 (1975) 4466.10.1063/1.321422Google Scholar
5. White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H. and Osborne, D. H., Mat. Res. Soc. Symp. Proc. Vol. 316 (1994) 499.10.1557/PROC-316-499Google Scholar
6. Williams, E. K., Ila, D., Darwish, A., Poker, D. B., Sarkisov, S. S., Curley, M. J., Wang, J-C., Svetchnikov, V. L., Zandbergen, H. W., Nucl. Instr. and Meth. in Phys. Res. B148 (1998) 1074.Google Scholar
7. Ila, D., Williams, E. K., Sarkisov, S., Smith, C. C., Poker, D. B., and Hensley, D. K., Nucl. Instr. and Meth. in Phys. Res. B141 (1998) 289.10.1016/S0168-583X(98)00072-XGoogle Scholar
8. Zimmerman, R. L., Ila, D., Williams, E. K., Poker, D. B., Hensley, D. K., Klatt, C., Kalbitzer, S., Nucl. Instr. and Meth. in Phys. Res. B148 (1998) 1064.Google Scholar
9. Fuchs, G., Abouchacra, G., Treilleux, M., Thévenard, P., and Serughetti, J., Nucl. Instr. and Meth. in Phys. Res. B32 (1988) 100.10.1016/0168-583X(88)90189-9Google Scholar
10. Abouchacra, G., Chassagne, G., and Serughetti, J., Radiation Effects 64 (1982) 189.10.1080/00337578208223012Google Scholar
11. Mie, G., Ann. Physik 25 (1908) 377.10.1002/andp.19083300302Google Scholar
12. Lide, D. R., Ed., CRC Handbook of Chemistry and Physics, 76th Edition (CRC Press, Boca Raton, 1987).Google Scholar
13. Friessenegg, T., Boudreau, M., Brown, J., Mascher, P., Simpson, P. J., and Puff, W., J. Appl. Phys. 80 (4), (1996) 2216.10.1063/1.363049Google Scholar