Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-24T17:31:41.790Z Has data issue: false hasContentIssue false

Formation of a Metastable Crystalline Phase During Ion Irradiation of Spinel

Published online by Cambridge University Press:  21 February 2011

R. Devanathan
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM.
N. Yu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM.
K. E. Sickafus
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM.
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM.
Get access

Abstract

We have examined the radiation resistance of magnesio-aluminate spinel by irradiating single crystals of MgAl2O4 with 400 keV Xe++ ions at 100 K. At low irradiation doses, the material transformed into a metastable crystalline phase with half the lattice spacing of the original crystal. Electron diffraction analysis revealed that this structural change can be explained in terms of the redistribution of cations among octahedral, tetrahedral, and three-fold coordinated interstitial sites of the close-packed anion lattice. Corresponding to this transformation, the hardness and elastic modulus increased with dose to values about 10% greater than those of unirradiated spinel. We believe that the formation of this metastable phase plays an important role in determining the radiation resistance of spinel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Clinard, F. W. Jr., Hurley, G. F. and Hobbs, L. W., J. Nucl. Mater. 108–109, p. 655670 (1982).Google Scholar
2 Sickafus, K. E., Larson, A. C., Yu, N., Nastasi, M., Hollenberg, G. W., Garner, F. A. and Bradt, R. C., J. Nucl. Mater. 219, p. 128134 (1995).Google Scholar
3 Zinkle, S. J., Nucl. Instr. and Meth. B 91, p. 234246 (1994).Google Scholar
4 Yu, N., Sickafus, K. E. and Nastasi, M., Phil. Mag. Lett. 70, p. 235240 (1994).Google Scholar
5 Sickafus, K. E., Yu, N., Devanathan, R. and Nastasi, M., Nucl. Instr. and Meth. B (in press).Google Scholar
6 Bordes, N., Wang, L. M., Ewing, R. C. and Sickafus, K. E., J. Mater. Res. 10, 981985 (1995).Google Scholar
7 Doyle, P. A. and Turner, P. S., Acta. Crystallogr. A 24, p. 390397 (1968).Google Scholar
8 Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids. Pergamon, Oxford, 1985.Google Scholar
9 Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, p. 15641583 (1992).Google Scholar
10 Yu, N., Devanathan, R., Sickafus, K. E. and Nastasi, M., Physical Review B. (submitted).Google Scholar
11 Chen, S. P, Yan, M., Gale, J. D., Grimes, R. W., Devanathan, R., Sickafus, K. E., Yuand, N. Nastasi, M., Phil. Mag. Lett, (in press).Google Scholar