Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T09:02:16.808Z Has data issue: false hasContentIssue false

The Formation and Characterization of Epitaxial Titanium Carbide Contacts to 4H-SiC

Published online by Cambridge University Press:  15 March 2011

S.-K. Lee
Affiliation:
KTH, Royal Institute of Technology, Dept. of Electronics, S-164 40, Kista, SWEDEN
E. Danielsson
Affiliation:
KTH, Royal Institute of Technology, Dept. of Electronics, S-164 40, Kista, SWEDEN
C.-M. Zetterling
Affiliation:
KTH, Royal Institute of Technology, Dept. of Electronics, S-164 40, Kista, SWEDEN
M. Östling
Affiliation:
KTH, Royal Institute of Technology, Dept. of Electronics, S-164 40, Kista, SWEDEN
J.-P. Palmquist
Affiliation:
Uppsala University, Dept. of Inorganic Chemistry, S-751 21, Uppsala, SWEDEN
H. Högberg
Affiliation:
Uppsala University, Dept. of Inorganic Chemistry, S-751 21, Uppsala, SWEDEN
U. Jansson
Affiliation:
Uppsala University, Dept. of Inorganic Chemistry, S-751 21, Uppsala, SWEDEN
Get access

Abstract

Epitaxial TiC Ohmic and Schottky contacts to 4H-SiC were formed by a new deposition method, UHV co-evaporation with Ti and C60, at low temperature (< 500°C). We achieved a contact resistivity of 2 × 10−5Δcm2 at 25°C for as deposited Ohmic contacts on Al ion implanted 4H-Silicon carbide. The rectifying behavior of TiC Schottky contacts was also investigated using I-V and C-V. The measured Schottky barrier height (SBH) was 1.26 eV for n-type and 1.65 eV for p-type 4H-SiC using C-V measurements for frequencies ranging from 1kHz to 1MHz. LEED, RBS, XPS, and XRD measurements were performed to analyze composition ratio, interface reaction, and structural properties of the TiC epitaxial layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Neudeck, P. G., J. Electron. Mater., 24, 283 (1995).Google Scholar
2. Porter, L. M. and Davis, R. F., Mater. Sci. Eng., B34, 83 (1995).Google Scholar
3. Crofton, J., Porter, L. M., and Williams, J. R., Phys. stat. sol. (b), 202, 581 (1997).Google Scholar
4. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. Oxford: Clarendon Press (1988).Google Scholar
5. Kimoto, T., Itoh, A., Matsunami, H., Nakata, T., and Watanabe, M., J. Electron. Mater., 25, 879 (1996).Google Scholar
6. Cree Research Inc., Durham, N.C, USA.Google Scholar
7. Lee, S.-K., Zetterling, C.-M., Östling, M., Palmquist, J.-P., Hägberg, H., and Jansson, U., Solid-State Electronics, 44, 1179 (2000).Google Scholar
8. Curl, R. F., Carbon, 30, 1149 (1992).Google Scholar
9. Kimoto, T., Wahab, Q., Ellison, A., Forsberg, U., Tuominen, M., Yakimova, R., Henry, A., and Janzen, E., Materials Science Forum, 264–268, 921 (1998).Google Scholar
10. Ziegler, J. F., TRIM 97 ed., Yorktown, , NY, USA.Google Scholar
11. Lee, S.-K., Zetterling, C.-M., and Östling, M., J. Appl. Phys., 87, 8039 (2000).Google Scholar
12. Lundberg, N. and Östling, M., Solid-State Electronics, 39, 1559 (1996).Google Scholar
13. Ruff, M., Mitlehner, H., and Helbig, R., IEEE Trans. Electron Dev., 41, 1040 (1994).Google Scholar
14. Zhao, J. H., Tone, K., Weiner, S. R., Caleca, M. A., Du, H., and Withrow, S. P., IEEE Electron Device Lett., 18, 375 (1997).Google Scholar