Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:08:30.606Z Has data issue: false hasContentIssue false

Ferroelectric and Dielectric Properties of Chemical-Solution-Derived Bismuth Lanthanum Titanate Thin Films with Various Bismuth Oxide Template layers

Published online by Cambridge University Press:  11 February 2011

Dinghua Bao
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo, 152–8552, Japan
Naoki Wakiya
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo, 152–8552, Japan
Kazuo Shinozaki
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo, 152–8552, Japan
Nobuyasu Mizutani
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo, 152–8552, Japan
Get access

Abstract

(Bi,La)4Ti3O12 (BLT) thin films with various Bi2O3 template layers were prepared on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method. Both of the BLT films with a thin Bi2O3 template layer and those without a Bi2O3 layer had a highly c-axis oriented growth, while both of the BLT films with a thin Bi2O3 bottom layer and those with a Bi2O3 intermediate layer were highly c-axis oriented. It was found that the use of Bi2O3 template layers improved significantly the ferroelectric properties of BLT thin films. In addition, the thin films with a thin Bi2O3 template layer showed good dielectric properties. All the capacitors with Bi2O3 template layers showed high polarization fatigue resistance and good retention properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aizawa, K., Tokumitsu, E., Okamoto, K. and Ishiwara, H., Appl. Phys. Lett. 76, 2609 (2000).Google Scholar
2. Bao, D. H., Wakiya, N., Shinozaki, K. and Mizutani, N., J. Phys. D: Appl. Phys. 35, L1 (2002).Google Scholar
3. Lee, H. N., Hesse, D., Zakharov, N. and Gosele, U., Science, 296, 2002 (2002).Google Scholar
4. Bao, D. H., Wakiya, N., Shinozaki, K., Mizutani, N., and Yao, X., J. Appl. Phys. 90, 506 (2001).Google Scholar
5. Bao, D. H., Wakiya, N., Shinozaki, K., Mizutani, N. and Yao, X., Appl. Phys. Lett. 78, 3286 (2001).Google Scholar
6. Dinu, R., Dinescu, M., Pedarnig, J. D., Gunasekaran, R. A., Bauerle, D., Bauer-Gononea, S. and Bauer, S., Appl. Phys. A 69, 55 (1999).Google Scholar
7. Zanetti, S. M., Ducler, J. R., Guilloux-Viry, M., Bouquet, V., Leite, E. R., Longo, E., Varela, J. A. and Perrin, A., J. Eur. Ceram. Soc. 21, 2199 (2001).Google Scholar
8. Park, Y. B., Jang, S. M., Lee, J. K., et al., J. Vac. Sci. Technol. A 18, 17 (2000).Google Scholar
9. Shin, W. and Yoon, S., Appl. Phys. Lett. 79, 1519 (2001).Google Scholar
10. Dawley, J. T., Radspinner, R., Zelinski, B. J. J. and Uhlmann, D. R., J. Sol-Gel Sci. Technol. 20, 85 (2001).Google Scholar
11. Kim, C. H., Lee, J. K., Suh, H. S., Yi, J. Y., Hong, K. S. and Hahn, J. S., Jpn. J. Appl. Phys. Part 1, 41, 1495(2002).Google Scholar
12. Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. and Jo, W., Nature, 401, 682 (1999).Google Scholar
13. Al-Shareef, H. N., Tuttle, B. A., Warren, W. L., Headley, T. J., Dimos, D., Voigt, J. A. and Nasby, R. D., J. Appl. Phys. 79, 1013 (1996).Google Scholar
14. Kang, B. S., Park, B. H., Bu, S. D., Kang, S. H. and Noh, T. W., Appl. Phys. Lett. 75, 2644 (1999).Google Scholar