Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T22:12:09.784Z Has data issue: false hasContentIssue false

Fermi Surface and Charge Density Waves in Second-Stage Graphite-Bromine Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

F. Batallan
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris 7, Tour 23, 2, Place Jussieu, 75251 Paris Cedex 05, France
I. Rosenman
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris 7, Tour 23, 2, Place Jussieu, 75251 Paris Cedex 05, France
Ch. Simon
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris 7, Tour 23, 2, Place Jussieu, 75251 Paris Cedex 05, France
G. Furdin
Affiliation:
Laboratoire de Chimie Minérale Appliquée (A. Herold) Université Nancy 1, 00140, 54037 Nancy Cedex, France
Get access

Abstract

Results of de Haas van Alphen effect study on second-stage bromine graphite intercalation compound C14 Br are presented together with a two dimensional model of electronic structure and Fermi surface. The results are characterized by a mixing of de Haas-van Alphen frequencies. The nature of the coupling mechanisms between orbits is discussed. It is shown that the two dimensional Fermi surface of C14 Br contains nested parallel parts which can stabilize charge density waves. A comparison between the nesting vectors of this Fermi surface and the satellites and diffuse streaks found in structural studies shows a fair agreement between both.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blinowski, J., Hau, N.H., Rigaux, C., Vieren, J.P., LeToullec, R., Furdin, G., Hérold, A., J. Melin, J. de Phys. (Paris) 41, 47 (1980).Google Scholar
2. Dresselhaus, M.S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).Google Scholar
3. Simon, Ch., Batallan, F., Rosenman, I., Phys. Rev. B23, 2836 (1981).Google Scholar
4. Furdin, G., unpublished.Google Scholar
5. Tanuma, S., Takahashi, O. and Iye, Y. in : Proceedings of the International Conference on the Physics of Intercalation Compounds, Trieste, Italy, 1981. Pietronero, L. and Tossati, E. eds. (Springer, Berlin, 1981) vol. 38 Google Scholar
5a. and Batallan, F., Rosenman, I. and Simon, Ch. in : Proceedings of the Second Conference on Intercalation Compounds in Graphite, Provincetown, Mass., U.S.A. (1980), Vogel, F.L. ed. (Elsevier Sequoia, Lausanne, 1980).Google Scholar
6. Gold, A.V. in : Electrons in Metals, Cochran, J.F. and Haering, R.R. eds. (Gordon and Breach, New York, 1968) Vol. 1, ch. 2.Google Scholar
7. Falicov, L.M. and Stachowiak, H., Phys. Rev. 147, 505 (1966).CrossRefGoogle Scholar
8. Schoenberg, D., Phil. Trans. Roy. Soc. (London), A255, 85 (1963):Google Scholar
8a.and Pippard, A.B., Proc. Roy. Soc. (London), A272, 192 (1962).Google Scholar
9. Falicov, L.M. and Zuckermann, M.J., Phys. Rev. 160, 372 (1967).CrossRefGoogle Scholar
10. Schluttmann, P. and Falicov, L.M., Phys. Rev. Lett. 38, 855 (1977).Google Scholar
11. Simon, Ch., Batallan, F., Rosenman, I., Lauter, H., Furdin, G., Phys. Rev. B (in press).Google Scholar
12. Eeles, W.T., Turnbull, J.A., Proc. Roy. Soc. (London) A283, 179 (1965).Google Scholar
13. Bardhan, K.K., Wu, J.C., Chung, D.D.L. in : Proceedings of the Second Conference on Intercalation Compounds in Graphite, Provincetown, Mass., U.S.A. (1980), Vogel, F.L. ed. (Elsevier Sequoia, Lausanne, 1980).Google Scholar
14. Moret, R., Comes, R., Furdin, G., Fuzzelier, H. and Rousseaux, F., in this Symposium.Google Scholar
15. Wilson, J.A., Di Salvo, F.J. and Mahajan, S., Adv. Phys. 24, 117 (1975).Google Scholar