Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-08-01T15:54:43.063Z Has data issue: false hasContentIssue false

Fast Proton Damage Effects on the Luminescence Properties of High-Quality GaN

Published online by Cambridge University Press:  21 March 2011

Qing Yang
Affiliation:
Department of Materials Science and Engineering, Univ. of California, Berkeley, California 94720, USA
Henning Feick
Affiliation:
Department of Materials Science and Engineering, Univ. of California, Berkeley, California 94720, USA
Rob Armitage
Affiliation:
Department of Materials Science and Engineering, Univ. of California, Berkeley, California 94720, USA
Eicke R. Weber
Affiliation:
Department of Materials Science and Engineering, Univ. of California, Berkeley, California 94720, USA
Get access

Abstract

High-quality GaN layers grown by hydride-vapor phase epitaxy (HVPE) and homoepitaxial layers grown thereon by molecular beam epitaxy (MBE) are studied after fast proton irradiation. A radiation-induced decrease of the band edge luminescence is observed. Time-resolved photoluminescence (PL) reveals a significant reduction of the carrier lifetime. A lifetime degradation constant of Kt = 4×10-15cm2/ns is reported for very thick HVPE GaN, and large variations are observed for the different layers. Partial recovery of the carrier lifetime and PL intensity with annealing is observed for thin HVPE GaN but not for the MBE overgrowth layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

on leave from center of advanced european studies and research (caesar), Bonn, Germany

References

1. Osinski, M., Perlin, P., Schone, H., Paxton, A.H., Taylor, E.W, Eletron. Lett. 33, 1252 (1997).10.1049/el:19970816Google Scholar
2. Luo, B., Hohnson, J.W., Ren, F., Allums, K.K., Abernathy, C.R., Pearton, S.J., Dwivedi, R., Fogarty, T.N., Wilkins, R., Dabiran, A.M., Wowchack, A.M., Polley, C.J, Chow, P.P, and Baca, A.G., Appl. Phys. Lett. 79, 2196 (2001).10.1063/1.1408606Google Scholar
3. Cai, S. J., Tang, Y.S., R.Li, Wei, Y.Y., Wong, L., Chen, Y.L., Wang, K.L., Chen, M., Zhao, Y.F., Schrimpf, R.D., Keay, J.C, and Galloway, K.F., IEEE Trans. Electron Devices, 47, 304 (2000).Google Scholar
4. Polenta, L., Fang, Z-Q., and Look, D. C, Appl. Phys. Lett. 76, 2086 (2000).10.1063/1.126263Google Scholar
5. Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J.R., Jones, R.L., and Molnar, R.J., Phys. Rev. Lett. 79, 2273 (1997).10.1103/PhysRevLett.79.2273Google Scholar
6. Auret, F. D., Goodman, S. A., Koschnick, F. K., Spaeth, J.-M., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 74, 407 (1999).Google Scholar
7. Bozdog, C., Przybylinska, H., Watkins, G.D., Harle, V., Scholz, F., Mayer, M., Kamp, M., Molnar, R.J., Wickenden, A. E., Koleske, D. D., and Henry, R. L., Phys. Rev. B, 59, 12 479 (1999).10.1103/PhysRevB.59.12479Google Scholar
8. Khanna, S.M., Webb, J., Tang, H., Haudayer, A.J., Carlone, C., IEEE Trans. Nucl. Sci. 47, 2322 (2000).Google Scholar
9. Neugebauer, J. and Walle, C. G. Van de, Appl. Phys. Lett. 69, 503 (1996).10.1063/1.117767Google Scholar
10. Saarinen, K., Laine, T., Kuisma, S., Nissilä, J., Hautojärvi, P., dobrzynski, I., Baranowski, J.M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszczynski, M., Grzegory, I., and Porowski, s., Phys. Rev. Lett. 79, 3030 (1997).10.1103/PhysRevLett.79.3030Google Scholar
11. Summers, G. P., Burke, E. A., shapiro, P., Messenger, S. R., and Walters, R. J., IEEE Trans. Nucl. Sci. 40, 1372 (1993).10.1109/23.273529Google Scholar
12. Parenteau, M., Carlone, C., Morris, D., Khanna, S.M., IEEE Trans. Nucl. Sci. 44, 1849 (1997).Google Scholar
13. Bertram, F., Srinivasan, S., Ponce, F.A., Riemann, T., Christen, J., Molnar, R.J., Appl. Phys. Lett. 78, 1222 (2001).10.1063/1.1350594Google Scholar