Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T12:04:47.656Z Has data issue: false hasContentIssue false

Fast Deposition of a-Si:H Layers and Solar Cells in a Large-Area (40×40 cm2) VHF-GD Reactor

Published online by Cambridge University Press:  15 February 2011

U. Kroll
Affiliation:
Institut de Microtechnique, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
D. Fischer
Affiliation:
Institut de Microtechnique, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
J. Meier
Affiliation:
Institut de Microtechnique, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
L. Sansonnens
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique F6d6rale de Lausanne, CH- 1015 Lausanne, Switzerland
A. Howling
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique F6d6rale de Lausanne, CH- 1015 Lausanne, Switzerland
A. Shah
Affiliation:
Institut de Microtechnique, Université de Neuchatel, CH-2000 Neuchatel, Switzerland
Get access

Abstract

Large-area deposition of hydrogenated amorphous silicon has been investigated in a single-chamber industrial reactor with electrode dimensions of 40×40 cm2 in the plasma excitation frequency range of 60 to 120 MHz. The film thickness uniformity, analyzed by a light interferometry technique and a step profiler, has been compared with 2-dimensional interelectrode voltage measurements and calculations. The frequency of 80 MHz has been found to be a good compromise between the gain in deposition rate and the homogeneity requirements necessary for a-Si:H solar cells. Under these conditions and while using hydrogen dilution high deposition rates of 6-7 Å/s with a film uniformity of ±5% over a usable substrate size of 30×30 cm2 have been obtained.

In the same single-chamber deposition system at 80 MHz, 0.4 gtm thick single-junction a-Si:H solar cells with high performance were fabricated in a total process time of 16 minutes applying a continuous deposition process. Spectral response measurements indicate a minor boron contamination of the i-layer. Initial cell efficiencies of 7.1 % could be achieved for such a fast-grown a-Si:H solar cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Curtins, H., Wyrsch, N., Favre, M. and Shah, A., Chem. Plasma Processing 7, 267 (1987).Google Scholar
2. Howling, A., Dorier, J.-L., Hollenstein, C., Kroll, U. and Finger, F., J. Vac. Sci. Technol. A 10, 1080 (1992).Google Scholar
3. Heintze, M., Zedlitz, R. and Bauer, G. H., J. Phys. D: Appl. Phys. 26, 1781 (1993).Google Scholar
4. Sansonnens, L., Pletzer, A., Magni, D., Howling, A. A., Hollenstein, C. and Schmitt, J. P. M., Plasma Sources Sci. Technol. 6, 170 (1997).Google Scholar
5. Kuske, J., Stephan, U., Steinke, O. and Röhlecke, S., Proc. of Mat. Res. Soc. Symp. 377 (1995), p. 27.Google Scholar
6. Sansonnens, L., Howling, A. A. and Hollenstein, C., Proc. of Mat. Res. Soc. Symp. 507 (1998), p. 541.Google Scholar
7. Sansonnens, L. et al., Proc. of 13th EC Photovoltaic Solar Energy Conference 1995, p. 319.Google Scholar
8. Meiling, H., Sark, W. G. J. H. van, Bezemer, J., Schropp, R. E. I. and Weg, W. F. van der, Proc. of 25th PVSC 1996, p. 1153.Google Scholar
9. Meot, J.; private communication.Google Scholar
10. Schropp, R. E. I. et al., Proc. of 1st WCPEC 1994, p. 626.Google Scholar
11. Fischer, D., Ph. thesis, D., Université de Neuchâtel 1994.Google Scholar