Article contents
Fabrication of Nanotips and Microbeams in Antimonide Based Semiconductor Material using Bromine Ion Beam Assisted Etching
Published online by Cambridge University Press: 01 February 2011
Abstract
Antimonide-based compound semiconductors have emerged as the materials of choice for fabricating high-speed low-power electronics and electro-optics for applications requiring miniaturization and portability. In this work Br-IBAE is shown to be an anisotropic antimonide etching technique that is capable of generating novel structures as well as performing standard etching tasks. When etching less than optimally chemical-mechanical polished (111) InSb wafers, sharp-tipped cone structures with tip radii of the order of less than 60 nm are produced. These structures may be ideally suited for the development of field-emission devices, where small tip radii are required for useful emission currents. The anisotropic nature of the IBAE technique allows one to etch channels in the surface at angles up to 70° from perpendicular, making the fabrication of microbeams feasible. Using an angled sample holder, the first etch undercuts the masked beams from one side. The sample is then removed and realigned so as to undercut the beams from the other side. The triangular shaped microbeams are left suspended from either one or both ends. Using a combination of atomic force microscopy and mechanical engineering beam analysis techniques, the elastic parameters of the material can be measured. The microbeams can be aligned along various directions on the surface to investigate anisotropic characteristics. This is particularly important for determining the mechanical characteristics of materials that can only be grown in thin epitaxial layers, such as quaternary antimonide-based compound semiconductors.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
- 1
- Cited by