Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T10:24:15.226Z Has data issue: false hasContentIssue false

Fabrication of Hollow Silica Aerogel Spheres for Direct Drive Inertial Confinement Fusion (ICF) Experiments

Published online by Cambridge University Press:  26 February 2011

Reny Richard Paguio
Affiliation:
reny.paguio@gat.com, General Atomics, PO Box 85608, San Diego, Ca, 92186-5608, United States, 858-455-3953, 858-455-2399
Abbas Nikroo
Affiliation:
nikroo@fusion.gat.com, General Atomics
Jared F Hund
Affiliation:
hundjf@fusion.gat.com, General Atomics
Christopher A. Frederick
Affiliation:
frederick@fusion.gat.com, General Atomics
Javier Jaquez
Affiliation:
jaquez@fusion.gat.com, General Atomics
Masa Takagi
Affiliation:
takagi@gat.com, Lawrence Livermore National Laboratoty
Mary Thi
Affiliation:
mary_thi@hotmail.com, UC San Diego
Get access

Abstract

Hollow foam spheres are needed for laser fusion experiments on the OMEGA laser facility at the University of Rochester as part of the demonstration of the feasibility of inertial confinement fusion. Previously polymer based foam and aerogel shells have been produced using resorcinol-formaldehyde (R/F) and divinylbenzene (DVB). In this paper we discuss the development of silica aerogel (SAG) shells. SAG may have the increased robustness, which is important in processing these laser targets. SAG shells were fabricated by the microencapsulation method using a triple orifice droplet generator. This technique allows for precise control of the shell diameter and wall thickness. Reduction of the aerogel gelation time is crucial to fabrication of intact shells with high yield. In addition, the proper choice of the components of the different phases of the microencapsulation process is essential for fabrication of intact SAG shells with proper sphericity and wall uniformity. The density of shells fabricated is approximately 100 mg/cc and the diameter ranges from 700–2000 μm, with a wall thickness of 50–200 μm. Development of a full density permeation barrier for retention of the fusion fuel will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Skupsky, S., Betti, R., Collins, T.B.J., Goncharov, V.N., Marozas, J.A., McKenty, P.W., Radha, P.B., Boehly, T.R., Knauer, J.P., Marshall, F.J., Harding, D.R., Kilkenny, J.D., Meyerhofer, D.D., Sangster, T.C., McCrory, R.L., Third International Conference on Inertial Fusion Sciences and Applications (IFSA 2003). American Nuclear Soc. Inc. pp.6164. La Grange Park, IL, USA (2004).Google Scholar
2 Lambert, S.M., Overturf, G.E. III, Wilemski, G., Letts, S.A., Schroen-Carey, D., Cook, R.C., J. Appl. Polymer Sci. 65, 2111 (1997).Google Scholar
3 Nikroo, A., Czechowicz, D., Paguio, R., Greenwood, A.L., Takagi, M., Fusion Technology 45, 84 (2004).Google Scholar
4 Paguio, R.R., Nikroo, A., Takagi, M., Acenas, O., submitted to Journal of Applied Polymer Sciences (2005).Google Scholar
5 Hund, J.F., Paguio, R.R., Frederick, C.A., Nikroo, A., Thi, M., To be published in Fusion Technology, (2005).Google Scholar
6 Brinker, C.J. and Scherer, G.W., Sol-Gel Science, p. 116, Academic Press, San Diego (1990).Google Scholar
7 Mazdivasni, J., private communication, (2002).Google Scholar
8 McQuillian, B.W., Nikroo, A., Steinman, D.A., Elsner, F.H., Czechowicz, D.G., Hoppe, M.L., Sixtus, M., Miller, W.J., Fusion Technol. 31, 381 (1997).Google Scholar
9 Takagi, M., Cook, R., Stephens, R., Gibson, J., Paguio, S., Fusion Technol. 38 (1), 46 (2001).Google Scholar
10 Paguio, R.R., Frederick, C.A., Hund, J.F., Czechowicz, D.G., Nikroo, A., Takagi, M., Acenas, O., Thi, M., Future paper to be published in the Symposium of Fusion Energy (SOFE) 2005, Knoxville, TN, (2005).Google Scholar
11 Kim, N.K., Kim, K., Payne, D.A., and Upadhye, R.S., J. Vac. Sci. Technol. A. 7, 1181 (1989).Google Scholar
12 Poco, J.F., Coronado, P.R., Pekala, R.W., and Hrubesh, L.W., Mat. Res. Soc. Symp. Proc. 431, 297 (1996).Google Scholar