Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T16:27:25.975Z Has data issue: false hasContentIssue false

Fabrication of Coaxial and Triaxial Atomic Force Microscope Imaging Probes

Published online by Cambridge University Press:  19 June 2014

Keith A. Brown
Affiliation:
International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, U.S.A.
Robert M. Westervelt*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
*
*Corresponding author: westervelt@seas.harvard.edu
Get access

Abstract

Herein, we detail the fabrication of atomic force microscope (AFM) probes that have two and three coaxial electrodes at their tips. This fabrication strategy leverages the availability of conductive AFM probes and encompasses a general method for processing their complex and delicate structure through the deposition of insulating and conductive layers by shadow masked chemical and physical vapor deposition, respectively. Focused ion beam milling is used to expose the two electrode (coaxial) or three electrode (triaxial) structures at the tip of the AFM probe. Finally, we discuss new imaging modalities enabled by these probes including electrically-driven contact resonance imaging for nanoscale mechanical characterization, imaging the local dielectric constant by quantifying the dielectrophoretic force, and trapping functional particles at the tip of a probe using dielectrophoresis. These imaging techniques illustrate the generality and utility of this fabrication approach and suggest that such probes could be widely applied to image many nanoscale materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Giessibl, F. J., Rev. Mod. Phys. 75, 949 (2003).CrossRefGoogle Scholar
Oliver, R. A., Rep. Prog. Phys. 71, 076501 (2008).CrossRefGoogle Scholar
Benstetter, G., Biberger, R. and Liu, D., Thin Solid Films 517, 5100 (2009).CrossRefGoogle Scholar
Brown, K. A. and Westervelt, R. M., Nanotechnology 20, 385302 (2009).CrossRefGoogle Scholar
Brown, K. A., Aguilar, J. A. and Westervelt, R. M., Appl. Phys. Lett. 96, 123109 (2010).CrossRefGoogle Scholar
Brown, K. A., Berezovsky, J. and Westervelt, R. M., Appl. Phys. Lett. 98, 183103 (2011).CrossRefGoogle Scholar
Brown, K. A. and Westervelt, R. M., Nano Lett. 11, 3197 (2011).CrossRefGoogle Scholar
Brown, K. A., Satzinger, K. J. and Westervelt, R. M., Nanotechnology 23, 115703 (2012).CrossRefGoogle Scholar
Rosner, B. T., Bork, T., Agrawal, V. and Weide, D. W. v. d., Sens. Actuators A 102, 185 (2002).CrossRefGoogle Scholar
Kim, K.-H., Moldovan, N., Ke, C. and Espinosa, H. D., Mater. Res. Soc. Symp. Proc. 782, A5.56.1 (2003).Google Scholar
Stryahilev, D., Sazonov, A. and Nathan, A., J. Vac. Sci. Technol. A 20, 1087 (2002).CrossRefGoogle Scholar
Brown, K. A., Yang, B. H. and Westervelt, R. M., Appl. Phys. Lett. 100, 053110 (2012).CrossRefGoogle Scholar
Rabe, U., Janser, K. and Arnold, W., Rev. Sci. Instrum. 67, 3281 (1996).CrossRefGoogle Scholar
Hurley, D. C., Kopycinska-Müller, M., Kos, A. B. and Geiss, R. H., Meas. Sci. Technol. 16, 2167 (2005).CrossRefGoogle Scholar
Cuberes, M. T., Assender, H. E., Briggs, G. A. D. and Kolosov, O. V., J. Phys. D Appl. Phys. 33, 2347 (2000).CrossRefGoogle Scholar
Rabe, U., Hirsenkorn, S., Reinstädtler, M., Sulzbach, T., Lehrer, C. and Arnold, W., Nanotechnology 18, 044008 (2007).CrossRefGoogle Scholar
Hurley, D. C., in Applied Scanning Probe Methods, edited by Bhushan, B. and Fuchs, H. (Springer-Verlag, Berlin Heidelberg, New York, NY, 2009), Vol. XI, pp. 97138.Google Scholar
Balasubramanian, G., Chan, I. Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P. R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F. and Wrachtrup, J., Nature 455, 648 (2008).CrossRefGoogle Scholar
Neuman, K. C. and Nagy, A., Nat. Methods 5, 491 (2008).CrossRefGoogle Scholar