Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-01T12:38:03.391Z Has data issue: false hasContentIssue false

Fabrication and Properties of AlGaN/GaInN Double Heterostructure Grown on 6H-SiC(0001)Si

Published online by Cambridge University Press:  21 February 2011

Hiroshi Amano
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Shigetoshi Sota
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Masaki Nishikawa
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Masato Yoshida
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Makoto Kawaguchi
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Masahiro Ohta
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Hiromitsu Sakai
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Isamu Akasaki
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
Get access

Abstract

AlGaN/GalnN double heterostructures (DH) were fabricated by metalorganic vapor phase epitaxy on the (0001)Si 6H-SiC substrate. A cleaved edge shows a very flat surface with roughness on the order of one monolayer. Stimulated emission and laser action from the UV to blue region was observed by optical pumping at room temperature (RT). The threshold power density was 27KW/cm2 which is smaller than that of the same structure grown on a sapphire (0001) substrate by a factor of four. A AlGaN/GalnN DH UV light emitting diode, using undoped GalnN is fabricated. The power efficiency and spectra width of this LED is comparable or superior to that of an LED having the same structure but grown on sapphire.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maruska, H.P. and Tietjen, J. J., Appl. Phys. Lett., 15, p.327 (1969).Google Scholar
2 Pankove, J. I., Miller, E. A., Richman, D. and Berkeyheiser, J. E., J. Lumin., 4, p.63 (1971).Google Scholar
3 Maruska, H. P., Rhines, W. C. and Stevenson, D. A., Mat. Res. Bull., 7, p.777(1972).Google Scholar
4 Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett., 48, p.353(1986).Google Scholar
5 Nakamura, S., Jpn. J. Appl. Phys, 30, p.L1705 (1991).Google Scholar
6 Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jpn. J. Appl. Phys., 28, p.L2112(1989).Google Scholar
7 Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., Jpn. J. Appl. Phys., 31, p. 1258(1992).Google Scholar
8 Van Vechten, J.A., Zook, J.D., Horning, R. D. and Goldenberg, B., Jpn J.Appl Phys., p.3662(1992).Google Scholar
9 Brandt, M. S., Ager III, J. W., Götz, W., Johnson, N. M., Harris, J. S., Molnar, R. J. and Moustakas, T. D., Appl. Phys. Lett., 64, p.2264(1994).Google Scholar
10 Yoshimoto, N., Matsuoka, T., Sasaki, T. and Katsui, A., Appl. Phys. Lett., 59, p.2251(1991).Google Scholar
11 Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64, p. 1687(1994).Google Scholar
12 Nakamura, S., Mukai, T. and Senoh, M., J. Appl. Phys., 76, p.8189(1994).Google Scholar
13 Nakamura, S., Senoh, M., Iwasa, N. and Nagahata, S., Jpn. J. Appl. Phys., 34, p.L797(1995).Google Scholar
14 Koike, M., Shibata, N., Kato, H., Yamasaki, S., Koike, N., Amano, H. and Akasaki, I., Abstract of Topical Workshop on IH-V Nitrides, Nagoya, Japan, September, p.C–2, (1995).Google Scholar
15 Dingle, R., Shaklee, K. L., Leheny, R. F. and Zetterstrom, R. B., Appl. Phys. Lett., 19, p.5(1971).Google Scholar
16 Cingolani, R., Ferrara, M. and Lugara, M., Solid State Commun., 60, p.705(1986).Google Scholar
17 Amano, H., Asahi, T. and Akasaki, I.; Jpn. J. Appl. Phys., 29, p.L205(1990).Google Scholar
18 Amano, H., Watanabe, N., Koide, N. and Akasaki, I., Jpn. J. Appl. Phys., 32, L1000(1993).Google Scholar
19 Amano, H., Tanaka, T., Kunii, Y., Kato, K., Kim, S. T. and Akasaki, I., Appl. Phys. Lett., 64 p.1377(1994).Google Scholar
20 Kim, S. T., Amano, H., Akasaki, I. and Koide, N., Appl. Phys. Lett., 64, p. 1535(1994)Google Scholar
21 Kim, S. T., Tanaka, T., Amano, H. and Akasaki, I., Mater. Sci. Eng., B26, p.L5(1994).Google Scholar
22 Yang, X. H., Schmidt, T. J., Shan, W., Song, J. J. and Goldenberg, B., Appl. Phys. Lett., 66, p.1(1995).Google Scholar
23 Zubrilov, A. S., Nikolaev, V. I., Tsvetkov, D. V., Dmitriev, V. A., Irvine, K. G., Edmond, J. A. and Carter, C. H. Jr., Appl. Phys. Lett., 67, p.533(1995).Google Scholar
24 Weeks, T. W. Jr., Bremser, M. D., Ailey, K. S., Carlson, E., Perry, W. G. and Davis, R. F., Appl. Phys. Lett., 67, p.401(1995).Google Scholar
25 Ponce, F. A., Krusor, B. S., Major, J. S. Jr., Piano, W. E. and Welch, D. F., Appl. Phys Lett., 67, p.410(1995).Google Scholar
26 Akasaki, I. and Amano, H., Proc. Int. Symp.Comp.Semicond. 22, Cheju, Korea, August 1995 (to be published).Google Scholar
27 Akasaki, I. and Amano, H., 6th Int. Conf. SiC and Related Mater., Kyoto, Japan, September, 1995 (to be published).Google Scholar
28 Akasaki, I., Amano, H., Koide, N., Kotaki, M. and Manabe, K., Physica B, 185, p.428(1993)Google Scholar