Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T01:55:31.225Z Has data issue: false hasContentIssue false

Fabrication and Investigation of the Metal-Ferroelectric-Semiconductor Structure with Pb(Zr0.53Ti0.47)O3 on AlxGa1-xN/GaN Heterostructures

Published online by Cambridge University Press:  21 March 2011

B. Shen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
W. P. Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
X. S. Wang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
F. Yan
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
R. Zhang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Z. X. Bi
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Y. Shi
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Z. G. Liu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Y. D. Zheng
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
T. Someya
Affiliation:
Research Center for Advanced Science and Technology and Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan.
Y. Arakawa
Affiliation:
Research Center for Advanced Science and Technology and Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan.
Get access

Abstract

An AlxGa1-xN/GaN-based metal-ferroelectric-semiconductor (MFS) structure is developed by depositing a Pb(Zr0.53Ti0.47)O3 film on a modulation-doped Al0.22Ga0.78N/GaN heterostructure. In high-frequency capacitance-voltage (C-V) measurements, the sheet concentration of the two-dimensional electron gas at the Al0.22Ga0.78N/GaN interface in the MFS structure decreases from 1.56 × 1013cm-2to 5.6 × 1012cm-2under the –10 V applied bias. A ferroelectric C-V window of 0.2 V in width near –10V bias is observed, indicating that the AlxGa1-xN/GaN MFS structure can achieve memory performance without the reversal of the ferroelectric polarization. The results indicate that AlxGa1-xN/GaN heterostructures are promising semiconductor channel candidates for MFS field effect transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yu, E. T., Sullivan, G. J., Asbeck, P. M., Wang, C. D., Qiao, D. and Lau, S. S., Appl. Phys. Lett., 71, 2794 (1997)Google Scholar
2. Burn, J., Chu, K., Schaff, W. J., Eastman, L. F., Khan, M. A., Chen, Q., Yang, J. W., Shur, M. S., IEEE Eletron. Device Lett., 18, 141 (1997)Google Scholar
3. Mohammad, S. N., Fan, Z. F., Salvador, A., Aktas, O., Botchkarev, A. E., Kim, W., Morkoc, H., Appl. Phys. Lett., 69, 1420 (1996)Google Scholar
4. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Kozojoy, P., Denbarrs, S. P., Mishra, U. K., Appl. Phys. Lett., 69, 1438 (1996)Google Scholar
5. Khan, M. A., Hu, X., Sumin, G., Lunev, A., Yang, J., Gaska, R. and Shur, M. S., IEEE Eletron Device Lett., 21, 63 (2000)Google Scholar
6. Pala, N., Gaska, R., Shur, M., Yang, J. W. and Khan, M. A., MRS Internet J. Nitride Semicond. Res., 5S1, W11.9 (2000)Google Scholar
7. Kawai, H., Hara, M., Nakamura, F., Asatsuma, T., Kobayashi, T., Imanaga, S., J. Cryst. Growth, 189, 738 (1998)Google Scholar
8. Imanaga, S. and Kawai, H., Jpn. J. Appl. Phys., 37, 5906 (1998)Google Scholar
9. Rost, T. A., Lin, He, and Rabson, Thomas A., Appl. Phys. Lett., 59, 3654 (1991)Google Scholar
10. Wu, S. Y., IEEE Tran. On Electron Devices, ED21, 499 (1974)Google Scholar
11. Buhay, H., Sinharoy, S., Kasner, W. H., Francombe, M. H., Lampe, D. R. and Stepke, E., Appl. Phys. Lett., 58, 1470 (1991)Google Scholar
12. Matthew, S., Ramesh, R., Venkatesan, T. and Benedetto, J., Science. 276, 238 (1997)Google Scholar
13. Li, W. P., Zhang, R., Shen, J., Liu, Y. M., Shen, B., Chen, P., Zhou, Y. G.. Li, J., Yuan, X. L., Chen, Z. Z., Shi, Y., Liu, Z. G., Zheng, Y. D., Appl. Phys. Lett., 77, 564 (2000)Google Scholar
14. Ambacher, O., Freudenberg, F., Dimitrov, R., Angerer, H., Stutzmann, M., Jpn. J. Appl. Phys., 37, 2416 (1998)Google Scholar
15. Shen, B., Someya, T. and Arakawa, Y., Appl. Phys. Lett., 76, 2746 (2000)Google Scholar
16. Yin, J., Zhu, T., Liu, Z. G. and Yu, T., Appl. Phys. Lett., 75, 3698 (1999)Google Scholar