Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T14:24:30.812Z Has data issue: false hasContentIssue false

Fabrication and Characterization of 2-inch diameter AlN Single-Crystal Wafers cut From Bulk Crystals

Published online by Cambridge University Press:  01 February 2011

Robert T. Bondokov
Affiliation:
bondokov@crystal-is.com, Crystal IS, Inc, Crystal Growth, 70 Cohoes Avenue, Green Island, NY, 12183, United States
Kenneth E. Morgan
Affiliation:
morgan@crystal-is.com, Crystal IS, Inc, 70 Cohoes Avenue, Green Island, NY, 12183, United States
Glen A. Slack
Affiliation:
slack@crystal-is.com, Crystal IS, Inc, 70 Cohoes Avenue, Green Island, NY, 12183, United States
Leo J. Schowalter
Affiliation:
Leo@crystal-is.com, Crystal IS, Inc, 70 Cohoes Avenue, Green Island, NY, 12183, United States
Get access

Abstract

Aluminum nitride (AlN) boules larger than 2 inches in diameter were grown by the sublimation-recondensation technique. X-ray Laue diffraction was used to characterize the crystallinity and orientation of the boules, and 2” dia. substrates were sliced with typical thickness of ∼500 μm. The wafers were then polished in order to meet the common standards for wafer thickness and flatness. The Al-terminated surface was finished with a proprietary chemical-mechanical process and showed RMS roughness of 0.5 nm or less as measured by atomic force microscopy (5×5 μm area). Currently, the substrates have some polycrystalline regions that are highly textured but about 85% of the total area is monocrystalline. The dislocation density in the crystalline regions of the substrate was measured by preferential chemical etching and then determining the resulting etch pit density (EPD). The etching technique involves potassium hydroxide and has been qualified through correlation with x-ray topography measurements of the dislocations. Measured EPD varied from 250 cm−2 to 3×104 cm−2. Other structural defects such as low angle grain boundaries, prismatic slip bands, inversion domains, have also been observed. The rare appearance of these defects will be discussed even though their role in the epitaxial growth of GaN and AlGaN is yet to be clarified.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slack, G. A. and McNelly, T.F., J. Cryst. Growth 34, 263 (1976).Google Scholar
2. Slack, G. A. and McNelly, T.F., J. Cryst. Growth 42, 560 (1977).Google Scholar
3. Epelbaum, B.M., Bickermann, M., Winnacker, A., J. Cryst. Growth 275, e479(2005).Google Scholar
4. Edgar, J.H., Liu, L., Liu, B., Zhuang, D., Chaudhuri, J., Kuball, M., Rajasingam, S., J. Cryst. Growth 246, 187 (2002).Google Scholar
5. Liu, B., Edgar, J.H., Raghothamachar, B., Dudley, M., Lin, J.Y., Jiang, H.X., Sarua, A., Kuball, M., Materials Science and Engineering B 117, 99 (2005).Google Scholar
6. Noveski, V., Schlesser, R., Raghothamachar, B., Dudley, M., Mahajan, S., Beaudoin, S., Sitar, Z., J. Cryst. Growth 279, 13 (2005).Google Scholar
7. Herro, Z.G., Zhuang, D., Schlesser, R., Collazo, R., Sitar, Z., J. Cryst. Growth 286, 205 (2006).Google Scholar
8. Rojo, J. C., Schowalter, L. J., Morgan, K., Florescu, D. I., Pollak, F. H., Raghothamachar, B., and Dudley, M. in Wide Bandgap Electronics, edited by Kazior, T. E., Parikh, P., Nguyen, C., Yu, E. T., (Mat. Res. Soc. Symp. Proc. 680E, San Fransisco, CA, 2001) pp. E2.1.1–E2.1.7.Google Scholar
9. Rojo, J.C., Slack, G. A., Morgan, K., Raghothamachar, B., Dudley, M., Schowalter, L. J., J. Cryst. Growth 231, 317 (2001).Google Scholar
10. Schowalter, L. J., Slack, G. A., Whitlock, J. B., Morgan, K., Schujman, S. B., Raghothamachar, B., Dudley, M., and Evans, K. R., phys. stat. sol. (c) 0, 1997 (2003).Google Scholar
11. Lebedev, V., Cimalla, V., Kaiser, U., Foerster, Ch., Pezoldt, J., Biskupek, J., and Ambacher, O., J. Appl. Phys, 97, 114306 (2005).Google Scholar
12. Onojima, N., Suda, J., Kimoto, T., and Matsunami, H., Appl. Phys. Lett. 83, 5208 (2003).Google Scholar
13. Schowalter, L. J., Lopez, J.M., Rojo, J.C., Morgan, K., US Patent No. 7 037 838 B2 (02 May 2006).Google Scholar
14. Raghothamachar, B., Dudley, M., Rojo, J.C., Morgan, K., Schowalter, L.J., J. Cryst. Growth 250, 244 (2003).Google Scholar
15. Bondokov, R. T., Morgan, K. E., Shetty, R., Liu, W., Slack, G. A., Goorsky, M., and Schowalter, L. J. in GaN, AlN, InN and Related Materials, edited by Kuball, M., Myers, T. H., Redwing, J. M., Mukai, T., (Mater. Res. Soc. Symp. Proc. 892, Boston, MA, 2006) pp. 0892-FF30-03.1 – 0892-FF-03.6.Google Scholar
16. Zhuang, D., Edgar, J.H., Materials Science and Engineering R 48, 1 (2005).Google Scholar
17. Zhuang, D., Edgar, J.H., Strojek, B., Chaudhuri, J., Rek, Z., J. Cryst. Growth 262, 89 (2004).Google Scholar