Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T20:20:12.471Z Has data issue: false hasContentIssue false

Fabrication and Atomistic Modeling of Ion-Etch Nanostructures on Substrates

Published online by Cambridge University Press:  01 February 2011

Maria Stepanova
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
Steven K. Dew
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
Get access

Abstract

We have implemented and investigated numerically a new process to fabricate self-organized metal networks and lines on non-metallic substrates. We have deposited a thin film of Cu on silicon and glass substrates and etched the film by a 1 keV-energy Ar beam. Due to the kinetic mechanism known as sputter instability, nanosize metal patterns self-organize on the substrate at the stage when the etched surface reaches the metal/substrate interface. By numerical simulations, we have investigated the mechanism and control factors for the process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carter, G., J. Phys. D 34, R1 (2001).Google Scholar
2. Bradley, R.M. and Harper, J. M. E., J. Vac. Sci. Technol. A6, 2390 (1988).Google Scholar
3. Frost, F., Schindler, A., and Bigl, F., Phys. Rev. Lett. 85, 4116 (2000).Google Scholar
4. Erlebacher, J., Aziz, M., Chason, E., Sinclair, M. B., and Florro, J. A., J. Vac. Sci. Technol. A 18, 115 (2000).Google Scholar
5. Valbusa, U., Boragno, C., and Buatier, F. de Mongeot, J. Phys.: Condens. Matter 14, 8153 (2002).Google Scholar
6. Bobek, T., Facsko, S., Kurz, H., Dekorsy, T., Xu, M., and Teichert, C., Phys. Rev. B 68, 085324 (2003).Google Scholar
7. Stepanova, M. and Dew, S. K., Appl. Phys. Lett. 84, 1374 (2004).Google Scholar
8. Stepanova, M., Dew, S. K., and Soshnikov, I. P., Appl. Phys. Lett. (2005) in press.Google Scholar
9. Kang, H.C. and Weinberg, W.H., Chem. Rev., 95 (1995) 667.Google Scholar
10. Friedrich, L. J., Gardner, D. S., Dew, S. K., Brett, M. J., and Smy, T., J. Vac. Sci. Technol. B15, 1780 (1997).Google Scholar
11. Teichert, C., Phys. Rep. 365, 335 (2002).Google Scholar
12. Thornton, K., Ågren, J., and Voorhees, P. W., Acta Materialia 51, 5675 (2003).Google Scholar
13. Stepanova, M., Dew, S. K., and Karpuzov, D., J. Appl. Phys. (2005) in press.Google Scholar
14. Zhdanov, V. P. and Kasemo, B., Surf. Sci. 437, 307 (1999).Google Scholar
15. Lo, A. L. and Skodje, R. T., J. Chem. Phys. 112, 1966 (2000).Google Scholar