Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T14:33:57.741Z Has data issue: false hasContentIssue false

Excited State Electronic Interactions in Oligothiophenes with Novel Supramolecular Structure*

Published online by Cambridge University Press:  21 March 2011

R. Tubino
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Università di Milano “Bicocca”, Milano, Italy
A. Borghesi
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Università di Milano “Bicocca”, Milano, Italy
A. Sassella
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Università di Milano “Bicocca”, Milano, Italy
C. Botta
Affiliation:
Istituto di Chimica delle Macromolecole, CNR, Milano, Italy
W. Porzio
Affiliation:
Istituto di Chimica delle Macromolecole, CNR, Milano, Italy
F. Della Sala
Affiliation:
INFM and Dipartimento di Ingegneria Elettronica, Università di Roma “Tor Vergata”, Roma, Italy
A. Di Carlo
Affiliation:
INFM and Dipartimento di Ingegneria Elettronica, Università di Roma “Tor Vergata”, Roma, Italy
P. Lugli
Affiliation:
INFM and Dipartimento di Ingegneria Elettronica, Università di Roma “Tor Vergata”, Roma, Italy
Get access

Abstract

Molecular beam deposition of quaterthiophene oligomer on a single crystal of potassium acid phtalate yields thin films exhibiting a novel supramolecular organisation which has been determined by a combined study of X-ray diffraction and polarized optical transmission measurements. In this structure consisting of stacks of tilted H aggregates, a commensurate ratio between the KAP substrate and the overgrown oligothiophene layer (quasi-epitaxial growth) is attained. The samples are optically extremely anisotropic, with the projection of the molecular axis on the substrate surface perfectly aligned along the b crystallographic axis. Using these novel structural data, the optical properties are interpreted within the framework of the transition density approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work partially supported by TMR-EUROLED program and by Italian CNR

References

1. Forrest, S.R., Chem. Rev., 97, 1793 (1997).Google Scholar
2. Tubino, R., Borghesi, A., Bella, L. Dalla, Destri, S., Porzio, W., and Sassella, A., Opt. Materials, 9, 437 (1998).Google Scholar
3. Gebauer, W., Sokolowski, M., and Umbach, R., Chem. Phys., 227, 33 (1998).Google Scholar
4. Okaya, T., Acta Crystallogr., 19, 879 (1965)Google Scholar
5. Ziegler, C., in Handbook of Organic Conductive Molecules and Polymers, Nalwa, S. ed. (John Wiley & Sons, 1997), Ch. 13.Google Scholar
6. Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S., and Alnot, P., J. Am. Chem. Soc., 115, 8716 (1993).Google Scholar
7. Botta, C., Tubino, R., Garnier, F., Oelkrug, D., Egelhaaf, H.-J., Bongiovanni, G., and Mura, A., manuscript in preparation.Google Scholar
8. Timpanaro, S., to be published.Google Scholar
9. Tedesco, C. and Immirzi, A., J. Polym. Sci. Polym. Chem., in press (1999).Google Scholar
10. Born, M. and Wolf, E., Principles of Optics (Pergamon Press, Oxford, 1985).Google Scholar
11. Oelkrug, D., Egelhaaf, H.-J., and Haiber, J., Thin Solid Films, 284–285, 267 (1996).Google Scholar
12. Kasha, M., Radiation Research, 20, 55 (1963).Google Scholar
13. Pope, M. and Swenberg, C.E., Electronic Processes in Organic Crystals (Clarendon, Oxford, 1982).Google Scholar
14. Salares, V.R., Young, N. M., Carey, P.R., and Bernstein, H. J., J. Raman Spectr., 6, 282 (1977).Google Scholar
15. DiCesare, N., Belletête, M., Garcia, E.R., Leclerc, M., and Durocher, G., J. Phys. Chem., A103, 3864 (1999).Google Scholar
16. Davidov, A.S., Theory of Molecular Excitons, Plenum Press (1971).Google Scholar
17. Cornil, J., Santos, D.A. Dos, Crispin, X., Silbey, R., and Brédas, J.L., J. Am. Chem. Soc., 120, 1289 (1998).Google Scholar
18. Muccini, M., Lunedei, E., Taliani, C., Beljonne, D., Cornil, J., and Brédas, J.L., J. Chem. Phys., 109, 10513 (1998).Google Scholar
19. Ridley, J.E. and Zerner, M.C., Theor. Chim. Acta, 32, 111 (1973); 53, 21 (1973).Google Scholar
20. Silbey, R. and Jortner, J., and Rice, S.A., J. Chem. Phys., 42, 1515 (1963).Google Scholar
21. Beljonne, D., Shuai, S., and Brédas, J.L., J. Chem. Phys., 98, 8819 (1993).Google Scholar