Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-13T01:20:02.491Z Has data issue: false hasContentIssue false

Excimer Laser Crystallized HWCVD Thin Silicon Films: Electron Field Emission

Published online by Cambridge University Press:  01 February 2011

M. Z. Shaikh
Affiliation:
Carnegie Laboratory of Physics, University of Dundee, DD1 4HN, Scotland, United Kingdom
K. A. O'Neill
Affiliation:
Carnegie Laboratory of Physics, University of Dundee, DD1 4HN, Scotland, United Kingdom
S. K. Persheyev
Affiliation:
Carnegie Laboratory of Physics, University of Dundee, DD1 4HN, Scotland, United Kingdom
M. J. Rose
Affiliation:
Carnegie Laboratory of Physics, University of Dundee, DD1 4HN, Scotland, United Kingdom
Get access

Abstract

Thin silicon films deposited using the Hot-Wire Chemical Vapor Deposition (HWCVD) technique are studied here for the effect of XeCl excimer laser crystallization on their structural, optoelectronic, and electron field emission properties. Excimer Laser Annealing (ELA) of the silicon thin films indicated increased dark conductivity and reduced optical gap. Encouraging Field Emission (FE) results were obtained from XeCl excimer laser processed HWCVD films on Cr, V, Mo, and Ti backplanes. Geometric field enhancement factors from surface measurements and Fowler-Nordheim Theory (FNT) were compared. FE thresholds were also found to be particularly influenced by the backplane material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Carey, J.D. and Silva, S.R.P, Appl. Phys. Lett. 78 (3), 347 (2001).10.1063/1.1339999Google Scholar
[2] Buldum, A. and Lu, J.P., Phys. Rev. Lett. 91 (23), 236801 (2003).10.1103/PhysRevLett.91.236801Google Scholar
[3] Li, Y.B., Bando, Y., Golberg, D., Appl. Phys. Lett. 82 (12), 1962 (2003).10.1063/1.1563307Google Scholar
[4] Silva, S.R.P., Forrest, R.D., Shannon, J.M., J. Vac. Sci. Technol. B 17, 596 (1999).10.1116/1.590601Google Scholar
[5] Tang, Y.F., Silva, S. R. P., Rose, M. J., Appl. Phys. Lett. 80 (22), 41544156 (2002).10.1063/1.1482141Google Scholar
[6] Persheyev, S.K., Goldie, D.M., Rose, M.J., Thin Solid Films 395, 130133 (2001).10.1016/S0040-6090(01)01233-0Google Scholar
[7] Jadkar, S.R., Sali, J.V., Takwale, M.G., Thin Solid Films 395, 206212 (2001).10.1016/S0040-6090(01)01269-XGoogle Scholar
[8] Toet, D., Takehara, T., Thompson, M.O., J. App. Phys. 85 (11), (1999).10.1063/1.370607Google Scholar
[9] Poruba, A., Fejfar, A., J. App. Phys. 88 (1), (2000).10.1063/1.373635Google Scholar
[10] Mao, D.S. and Zhou, J.Y. et al, J. Vac. Sci Technol. B 17(2), 311 (1999).10.1116/1.590556Google Scholar
[11] Alpuim, P. and Conde, J.P., J. App. Phys. 86 (7), (1999).10.1063/1.371292Google Scholar
[12] Yogoro, Yusuke, Masuda, Atsushi, Matsumura, Hideki, Thin Solid Films, 430 (2003).10.1016/S0040-6090(03)00089-0Google Scholar
[13] Han, Daxing, Habuchi, H., Wang, Qi, J.App. Phys. 87 (4), 18821888 (1999).10.1063/1.372108Google Scholar
[14] Lerner, P. and Miskovsky, N.M., J. Vac. Sci. Technol. B 16, 900 (1998).10.1116/1.589927Google Scholar