Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-21T01:54:22.173Z Has data issue: false hasContentIssue false

Exafs Spectroscopic Studies of Uranium (VI) Oxide Precipitates

Published online by Cambridge University Press:  10 February 2011

P.G. Allen
Affiliation:
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, Livermore, CA 94551
D.K. Shuh
Affiliation:
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J.J. Bucher
Affiliation:
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
N.M. Edelstein
Affiliation:
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
C.E.A. Palmer
Affiliation:
Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, Livermore, CA 94551
L. N. Marquez
Affiliation:
Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, Livermore, CA 94551
Get access

Abstract

We have investigated the structures of U(VI) oxides precipitated from room temperature aqueous solutions at low ionic strength as a function of pH. Using the uranium LIII - edge extended x-ray absorption fine structure (EXAFS) as a probe of the local structure around the uranium, a trend is observed whereby the axial oxygen bond lengths from the uranyl groups increase from 1.80 Å at pH=7 to 1.86 Å at pH=11. A concomitant decrease in the equatorial oxygen and nearest-neighbor uranium bond lengths also occurs with increasing pH. Expansion of the linear O=U=O group is seen directly at the L111 absorption edge where multiple scattering resonances systematically shift in energy. EXAFS curve-fitting analysis on these precipitates and a sample of synthetic schoepite indicate that the structure of the species formed at pH=7 is similar to the structure of schoepite. At pH=11, the precipitate structure is similar to that of a uranate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Finch, R. J., Miller, M. L., Ewing, R. C.: Radiochim. Acta 58/59, 433443 (1992).Google Scholar
2. Weigel, F.: Uranium, The Chemistry of the Actinide Elements; Eds. Katz, J. J., Seaborg, G. T., and Morss, L. R.. Chapman and Hall: New York, Vol 1, Chapter 5, (1986).Google Scholar
3. Morss, L. R.: Complex Oxide Systems of the Actinides, Actinides In Perspective, Ed. Edelstein, N. M.. Pergamon Press Inc.: New York, 381408 (1982).Google Scholar
4. Hoekstra, H. R., Siegel, S.: J. Inorg. Nucl. Chem. 35, 761779, (1973).Google Scholar
5. Rehr, J. J., Mustre de Leon, J., Zabinsky, S., Albers, R. C.: Phys. Rev. B 44, 4146 (1991).Google Scholar
6. Petiau, J., Calas, G., Petitmaire, D., Bianconi, A., Benfatto, M., Marcelli, A.: Phys. Rev. B 34, 7350 (1986).Google Scholar
7. Bertram, S., Kaindl, G., Jove, J., Pages, M., Gal, J.: Phys. Rev. Lett. 63, 2680 (1989).Google Scholar
8. Hudson, E. A., Rehr, J. J., Bucher, J. J.: Phys. Rev. B 52, 13815 (1995).Google Scholar