Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T15:07:12.046Z Has data issue: false hasContentIssue false

Evolution of Buried Cobalt Silicide Layers Formed by Co Implantation in Si(111)

Published online by Cambridge University Press:  25 February 2011

Yong-Fen Hsieh
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Robert Hull
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Alice E. White
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Ken T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Coalescence and microstructure of buried CoSi2 layers formed by 100 keV Co+ implantation at 350°C into Si(111) are studied. Doses ranged from 1×1016 to 1.6×l017 cm−2. The critical dose (dc) required to form a continuous layer is found to be the same, 1.1±0.1×l017 cm−2, in both (111) and (001) substrates, despite pronounced differences in precipitate morphology. Three types of precipitates are observed in Si(111) during the mesotaxial process: A–type (fully aligned), B0–type (twinned on the (111) plane parallel to the surface), and B1,2,3–type (twinned on one of the three (111) planes inclined to the surface). The fraction of each varies with both the implantation and annealing conditions. Formation of a continuous, twinned (B0–type), buried layer after 1000°C annealing is shown to be possible for the first time by this synthesis technique in samples implanted at dc.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50(2). 95 (1987).Google Scholar
2. White, A. E., Short, K. T., Dynes, R. C., Gibson, J. M., and Hull, R., Mat. Res. Soc. Symp. Proc. 100, 3 (1988).Google Scholar
3. Vandenberg, J. M., White, A. E., Hull, R., Short, K. T., and Yalisove, S. M., J. Appl. Phys. 67(2). 787 (1990).Google Scholar
4. Van Ommen, A. H., Ottenheim, J. J. M., Theunissen, A. M. L., and Mouwen, A. G., Appl. Phys. Lett. 53(8). 669 (1988).Google Scholar
5. Bulle–Lieuwma, C. W. T., Van Ommen, A. H., and van IJzendoorn, L. J., Appl. Phys. Lett. 54(3). 244 (1989).Google Scholar
6. Van Ommen, A. H., Ottenheim, J. J. M., Bulle–Lieuwma, C. W. T., and Theunissen, A. M. L., Appl. Surf. Sci. 38, 197 (1989).Google Scholar
7. Kohlhof, K., Mantl, S., and Stritzker, B., Appl. Surf. Sci. 38, 207 (1989).Google Scholar
8. Hull, R., White, A. E., Short, K. T., and Bonar, J. M., J. Appl. Phys. 68(4). 1629 (1990).Google Scholar
9. Hull, R., Hsieh, Y. F., Short, K. T., and White, A. E., Mat. Res. Soc. Symp. Proc. 183. 91 (1990), edited by Sinclair, R., Smith, D. J., and Danmen, U..Google Scholar
10. Vanderstraeten, H., Bruynseraede, Y., Wu, M. F., Vantomme, A., Langouche, G., and Phillips, J. M., Appl. Phys. Lett. 57(2). 135 (1990).Google Scholar
11. Tung, R. T. and Gibson, J. M., J. Vac. Sci. Technol. A 3(3). 987 (1985).Google Scholar