Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-17T22:52:38.327Z Has data issue: false hasContentIssue false

Evidence of Energy Relaxation of Charged Defects in Amorphous Silicon Via Forward Bias Capacitance Measurements

Published online by Cambridge University Press:  16 February 2011

D. Caputo
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18 00184, Roma, Italy.
G. de Cesare
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18 00184, Roma, Italy.
G. Masini
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18 00184, Roma, Italy.
F. Palma
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18 00184, Roma, Italy.
A. Pastore
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18 00184, Roma, Italy.
M. Tucci
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18 00184, Roma, Italy.
Get access

Abstract

In this paper we show that the usual behaviour of forward bias C-V-f measurements performed on p-i-n structure, Modifies at the lowest test frequencies when the measurement is performed at high temperature (120°C), or if the cell under test is at a certain stage of the degradation process. We relate the effect to the relaxation of charged defects toward dangling bonds in the i-layer of a p-i-n structure. In capacitance measurements under forward bias, the applied sinusoidal test voltage periodically changes the density of injected charge and the defect occupancy in the intrinsic layer. We show that this effect may Modulate the tendency of defects to relax to lower energy configuration. Relaxation changes the time scale of the subsequent thermal emission of the trapped charge; this reflects on the measured capacitance which drops at low frequency. We also demonstrate the possibility to obtain the relaxation parameters from the frequency dependence of the measured capacitance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stutzmann, M., Biegelsen, D.K., Phys. Rev. B 40, 9834, (1989)CrossRefGoogle Scholar
2. Adler, D., J. Phys. (Paris) 42, C43 (1981)Google Scholar
3. Branz, H. M., Silver, M., Phys. Rev. B 42, 7420, (1990)Google Scholar
4. Street, R. A., Winer, K., Phys. Rev. B 40, 6236 (1989)Google Scholar
5. Bar-Yam, Y., Adler, D., Joannopoulos, J.D., Phys. Rev. Lett. 57, 467 (1986)Google Scholar
6. Schumm, G., Bauer, G.H., Phil. Mag. B 64, 515 (1991)Google Scholar
7. McMahon, T.J., Crandall, R.S., Phys. Rev. B 39, 1766 (1989)Google Scholar
8. Irrera, F., J. Appl. Phys., 75 (3), 1396 (1994)CrossRefGoogle Scholar
9. Cohen, J. D., Leen, T. M., Zhong, F., Rasmussen, R.J., Mat. Res. Soc. Symp. Proc. Vol. 297, 183 (1993)Google Scholar
10. Caputo, D., de Cesare, G., Irrera, F., Palma, F., Tucci, M., J. Appl. Phys. to be published (1994)Google Scholar
11. Masini, G., Palma, F., Tucci, M., 23rd Photov. Spec. Conf. Procc., 996 (1993)Google Scholar