Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-30T18:35:11.034Z Has data issue: false hasContentIssue false

Evidence for Antiferroelectric Behavior in KNbO3/KTaO3 Superlattices

Published online by Cambridge University Press:  01 February 2011

J. Sigman
Affiliation:
Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Rhines Hall, Gainesville, FL 32611.
H. M. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831.
P. H. Fleming
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831.
L. A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831.
D. P. Norton
Affiliation:
Department of Materials Science and Engineering, University of Florida, P.O. Box 116400, Rhines Hall, Gainesville, FL 32611.
Get access

Abstract

The dielectric response in artificially layered 1x1 KTaO3/KNbO3 perovskite superlattice structures is reported. While KTaO3 and KNbO3 are ferroelectric or paraelectric, respectively, superlattices appear antiferroelectric based on an increase in dielectric constant with applied dc bias. This “positive tunability” in dielectric response occurs at the same temperature region where a structural phase transition is observed. This dielectric behavior is inconsistent with the nonlinear response for either paraelectric or ferroelectric materials. However, an increase in the dielectric constant with applied electric field is consistent with antiferroelectric behavior. The antiferroelectric ordering correlates with cation modulation imposed by the superlattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bozinis, D. G. and Hurrell, J. P., Phys. Rev. B 13, 3109 (1976)Google Scholar
2. Fujii, Y. and Sakudo, T., J. Phys. Soc. Jpn. 41, 888 (1976)Google Scholar
3. Toulouse, J., Wang, X. M., Knass, L. A., and Boatner, L. A., Phys. Rev. B 43, 8297 (1991)Google Scholar
4. Höchli, U. T., Weibel, H. E., and Boatner, L. A., Phys. Rev. Lett. 39, (18) 11581161 (1977)Google Scholar
5. Höchli, U. T. and Boatner, L. A., Phys. Rev. B 20, (1) 266275 (1979)Google Scholar
6. Galasso, F. S., “Perovskites and High Tc Superconductors,” (Gordon and Breach, New York, 1990)Google Scholar
7. Rytz, D., Klein, M. B., Bobbs, B., Matloubian, M., and Fetterman, H., Jpn. J. Appl. Phys. 24 Suppl. 24-2, 1010 (1985)Google Scholar
8. Carter, A. C., Horvitz, J. S., Chrisey, D. B., Pond, J. M., Kirchoefer, S. W., and Chang, W., Integrated Ferroelectrics 17, 273 (1997)Google Scholar
9. Khemakhem, H., Ravez, J., and Daoud, A., Phys. Stat, Sol. (a) 161, 557 (1997)Google Scholar
10. Yilmaz, S., Venkatesan, T., and Gerhard-Multhaupt, R., Appl. Phys. Lett. 58, 2479 (1991)Google Scholar
11. Fernandez, F. E., Pumarol, M., Marrero, P., Rodriguez, E., and Mourad, H. A., Mat. Res. Soc. Symp. Proc. 493, 365 (1998)Google Scholar
12. Christen, H.-M., Boatner, L. A., Budai, J. D., Chisholm, M. F., Gea, L. A., Marrero, P. J., and Norton, D. P., Appl. Phys. Lett. 68, 1488 (1996)Google Scholar
13. Christen, H.-M., Specht, E.D., Norton, D.P., Chisholm, M.F., and Boatner, L.A., Appl. Phys. Lett. 72, 2535 (1998)Google Scholar
14. Specht, E.D., Christen, H.-M., Norton, D.P., and Boatner, L.A., Phys. Rev. Lett. 80, 4317 (1998)Google Scholar
15. Chang, W., Horwitz, J. S., Kim, W.-J., Pond, J. M., Kirchoefer, S. W., Gilmore, C. M., Qadri, S. B., and Chrisey, D. B., MRS Symp. Proc. 541, (Materials Research Society, Warrendale, 1999), p. 693698 Google Scholar
16. Smolenskii, G. A., Bokov, V. A., Isupov, V. A., Krainik, N. N., Pasynkov, R. E., and Sokolov, A. I., “Ferroelectrics and Related Materials,” (Gordon and Breach, London, 1984), pp. 607659 Google Scholar
17. Xu, B., Cross, L. E., and Bernstein, J. J., Thin Solid Films 377-378, 712 (2000)Google Scholar
18. Chattopadhyay, S., Ayyub, P., Palkar, V. R., Multani, M. S., Pai, S. P., Purandare, S. C., and Pinto, R., J. Appl. Phys. 83, 7808 (1998)Google Scholar
19. Bharadwaja, S. S. N. and Krupanidhi, S. B., J. Appl. Phys. 86, 5862 (1999)Google Scholar
20. Kwon, J. R. and Choo, W. K., J. Phys.: Condens. Matter 3, 2147 (1991)Google Scholar
21. Bokov, A. A., Raevskii, I. P., and Smotrakov, V. G., Sov. Phys. Solid State 25, 1168 (1983)Google Scholar
22. Park, Y. and Cho, K., J. Am. Ceram. Soc. 83, 135 (2000)Google Scholar