Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T23:49:58.774Z Has data issue: false hasContentIssue false

Eu-doping induced improvement on the second harmonic generation of ZnO Nanowires

Published online by Cambridge University Press:  04 April 2014

Soumen Dhara
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
Kenji Imakita
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
Minoru Mizuhata
Affiliation:
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
Minoru Fujii
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
Get access

Abstract

We report the Eu doping induced improvement on the second harmonic generation (SHG) of ZnO nanowires and correlates with the structural modification and corresponding linear absorption. A non-monotonic enhancement in the SHG emission is observed with the increase of Eu concentration. To understand the underlying mechanism, the effective second order non–linear coefficient (deff) is calculated from the theoretical fitting with considering the absorption effect. The highest deff (19.09±0.11 pm/V) is obtained for the 1 at.% Eu doped ZnO nanowires, which is several times larger than the standard SHG material β-BaB2O4 (BBO). Dependence of the deff with the Eu doping, structural modification and absorption magnitude are systematically discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bano, N., Zaman, S., Zainelabdin, A., Hussain, S., Hussain, I., Nur, O. and Willander, M., J. Appl. Phys. 108, 043103 (2010).CrossRefGoogle Scholar
Cui, Y., Wei, Q., Park, H. and Lieber, C. M., Science 293, 12891292 (2001).CrossRefGoogle Scholar
Kumar, N., Dorfman, A. and Hahm, J., Nanotechnol. 17, 28752881 (2006).CrossRefGoogle Scholar
Dhara, S. and Giri, P. K., J. Appl. Phys. 111, 044320 (2012).CrossRefGoogle Scholar
Steckl, A. J., Park, J. H. and Zavada, J. M., Mater. Today 10, 2027 (2007).CrossRefGoogle Scholar
Hite, J., Thaler, G. T., Khanna, R., Abernathy, C. R., Pearton, S. J., Park, J. H., Steckl, A. J. and Zavada, J. M., Appl. Phys. Lett. 89, 132119 (2006).CrossRefGoogle Scholar
Li, Y., Yu, S., Meng, X., Liu, Y., Zhao, Y., Liu, F. Q. and Wang, Z., J. Phys. D: Appl. Phys. 46, 215101 (2013).CrossRefGoogle Scholar
Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W. and Schneider, J., Appl. Phys. Lett. 46, 381383 (1985).CrossRefGoogle Scholar
Ishizumi, A. and Kanemitsu, Y., Appl. Phys. Lett. 86, 253106 (2005).CrossRefGoogle Scholar
Wang, D., Xing, G., Gao, M., Yang, L., Yang, J. and Wu, T., J. Phys. Chem. C 115, 2272922735 (2011).CrossRefGoogle Scholar
Fiebig, M., Pavlov, V. V. and Pisarev, R. V., J. Opt. Soc. Am. B 22, 96118 (2005).CrossRefGoogle Scholar
Campagnola, P., Anal. Chem. 83, 32243231 (2011).CrossRefGoogle Scholar
Lo, K.-Y., Lo, S.-C., Yu, C.-F., Tite, T., Huang, J.-Y., Huang, Y.-J., Chang, R.-C. and Chu, S.-Y., Appl. Phys. Lett. 92, 091909 (2008).CrossRefGoogle Scholar
Das, S. K., Bock, M., O’Neill, C., Grunwald, R., Lee, K. M., Lee, H. W., Lee, S. and Rotermund, F., Appl. Phys. Lett. 93, 181112 (2008).CrossRefGoogle Scholar
Shi, S. L., Xu, S. J., Xu, Z.-X., Roy, V. A. L. and Che, C.-M., Chem. Phys. Lett. 506, 226229 (2011).CrossRefGoogle Scholar
Dhara, S. and Giri, P. K., J. Exp. NanoSci. 8, 332340 (2013).CrossRefGoogle Scholar
Du, Y.-P., Zhang, Y.-W., Sun, L.-D. and Yan, C.-H., J. Phys. Chem. C 112, 1223412241 (2008).CrossRefGoogle Scholar
Vercaemst, R., Poelman, D., Fiermans, L., Van Meirhaeghe, R. L., Laflere, W. H. and Cardon, F., J. Electron Spectrosc. 74, 4565 (1995).CrossRefGoogle Scholar
Maker, P. D., Terhune, R. W., Nisenhoff, M. and Savage, C. M., Phys. Rev. Lett. 8, 2122 (1962).CrossRefGoogle Scholar
Herman, W. N. and Hayden, L. M., J. Opt. Soc. Am. B 12, 416427 (1995).CrossRefGoogle Scholar
Griebner, U., Kaindl, R. A., Elsaesser, T. and Seeber, W., Appl. Phys. B 67, 757760 (1998).CrossRefGoogle Scholar
Liu, Y. S., Luo, W. Q., Li, R. F., Liu, G. K., Antonio, M. R. and Chen, X. Y., J. Phys. Chem. C 112, 686694 (2008).CrossRefGoogle Scholar