Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T20:13:05.331Z Has data issue: false hasContentIssue false

Erbium Doped Tellurite Glasses

Published online by Cambridge University Press:  15 February 2011

Jau-Sheng Wang
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, NJ 08854
Elias Snitzer
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, NJ 08854
George H. Sigel Jr.
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, NJ 08854
Get access

Abstract

The results to be presented focus on the optimization of tellurite glass compositions which are suitable both for doping with erbium oxide as well as subsequent for fiber drawing. The laser related properties, such as fluorescence spectrum, lifetime, and optical transition cross sections will be presented. Judd-Ofelt parameters for erbium in the glasses have been exploited to predict fluorescence lifetime, excited state absorption(ESA), ground state absorption(GSA) and ground state fluorescence(GSF). For comparison, the absorption cross section, emission cross section, excited state absorption(ESA)/ground state absorption(GSA)(0.8μm pumping) and fluorescence terminating in the ground state(GSF)/excited state absorption(ESA) ratios are calculated for both Al2O3-SiO2 and tellurite glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snitzer, E., Po, H., Hakimi, F., Tumminelli, R. and McCallum, B.C., Optical Fiber Communications Conf. ‘88, New Orleans, Louisiana(1988), Postdeadline Paper PD2.Google Scholar
2. Mears, R.J., Reekie, L., Jauncey, I.M., and Payne, N., Electron. Lett., 23,1026 (1987).Google Scholar
3. Desurvire, E., Simpson, J.R., and Becker, P.C., Opt. Lett., 12. 888 (1987).Google Scholar
4. Creaner, M.J., Spirit, D., Walker, G.R., Walker, N.G., Steele, R.C., Mellis, J., Chalabi, S.A., Hale, W., Sturgees, I., Rutherford, M., Trivett, D., and Brian, M., Electron. Lett., 26, 442 (1990).Google Scholar
5. Reisfeld, R. and Eckstein, Y., J. Non-cryst. Solids, 15, 125 (1974).Google Scholar
6. Bahgat, A.A., Shaisha, E.E., Sabry, A.I., J. Mat. Sci., 22, 1323 (1987).Google Scholar
7. Weber, M.J., Myers, J.D. and Blackburn, D.H., J. AppI. Phys, 52 (4), 2944 (1981).Google Scholar
8. Mochida, N., Takahashi, K., Nakata, K., Shibusawa, S., Yogyo Kyokaishi, 86, 317 (1978).Google Scholar
9. Vlasov, A.G., Florinkaya, V.A., Venediktova, A.A., Zubareva, E.P., Kurtsinovskaya, R.I., Smirnova, V.N., and Yakhind, A.K., Handbook of Glass Data. Ed. Mazurin, O.V., Streltsoma, M.V., and Shvaikovskaya, T.P.. Elsevier (1978).Google Scholar
10. Judd, B.R., Phys. Rev., 127, 750 (1962).10.1103/PhysRev.127.750CrossRefGoogle Scholar
11. Ofelt, G.S., J. Chem. Phys., 37, 511(1962).Google Scholar
12. Laming, R.L., Poole, S.B., and Tarbox, E. J., Optics Lett., 13, 1084 (1988).Google Scholar