Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T09:41:20.286Z Has data issue: false hasContentIssue false

Epr of Fe3+ and Cr3+ Ions in NZP Ceramics

Published online by Cambridge University Press:  10 February 2011

A. Y. Troole
Affiliation:
SIA “Radon”, 7th Rostovskii per., 2/14, Moscow 119121 Russia;
S. V. Stefanovsky
Affiliation:
SIA “Radon”, 7th Rostovskii per., 2/14, Moscow 119121 Russia;
L. D. Bogomolova
Affiliation:
Institute of Nuclear Physics of Moscow State University, Vorobyovy gory, Moscow, Russia.
Get access

Abstract

A new method to estimate the thermodynamic stability of crystalline host phases for radwaste is based on the determination of the degree of coordination polyhedra distortion. Analysis of the stability of sodium zirconium phosphate (NZP) structure containing Fe and Cr has been completed. The NZP structure can incorporate a limited amount of iron (∼2 mol. % Fe2o3). From the EPR study, Fe3+ and Cr3+ ions occupy two different structural positions substituting for Zr4+and Na+. Moreover, these ions can enter extra phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scheetz, B. E., Agrawal, D. K., Breval, E., Roy, R., Waste Manag. 14, 489 (1994).Google Scholar
2. Hong, Fl.Y. P., Mat. Res. Soc. Bull. 11, 173 (1976).Google Scholar
3. Goodenough, B., Hong, H. Y. P., Kafalas, J. A., Mat. Res. Soc. Bull 11, 203 (1976).Google Scholar
4. Alamo, J., Roy, R., J. Amer. Ceram. Soc. 63, C-78 (1984).Google Scholar
5. Roy, R., Agrawal, D. K., Alamo, J., Roy, R. A., Mat. Res. Soc. Bull. 19, 471 (1984).Google Scholar
6. Roy, R., Vance, E. R., Alamo, J., Mat. Res. Soc. Bull. 17, 585 (1981).Google Scholar
7. Alamo, J., Roy, R., J. Mat. Sci. 21, 444 (1986).Google Scholar
8. Landau, L. D., J. Exp. Theor. Phys. (Russ. -ЖЗTф) 7, 19 (1937).Google Scholar
9. Pavlov, P. V., Khokhlov, A. F., Solid State Physics (Russ.), (Nauka, Moscow, 1985), p. 111.Google Scholar
10. Troole, A. Y., Stefanovsky, S. V., Bogomolova, L. D., Phys. Chem. Mat. Treat. (Russ.) 4, (1998).Google Scholar
11. Khasanova, N. M., Nizamutdinov, N. M., Vinokurov, V. M., Bulka, G. R., Crystallogr. (Russ.) 33, 891 (1988).Google Scholar
12. Buckmaster, HA., Chatterjee, R., Phys. Stat. Sol. A13, 9 (1972).Google Scholar
13. Lyubarsky, G.Y., Group Theory and Its Application to Physics (Russ.), (Nauka, Moscow, 1957), p. 262.Google Scholar
14. Troole, A.Y., Ph.D. Thesis, SIA “Radon”, in press.Google Scholar
15. Efremov, V.A., Kalinin, V.B., Soy. Phys. Crystallogr. (Russ.) 23, 393 (1978).Google Scholar
16. Hong, HY.P., in Processing of the International Conference on Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J. N. and Shenoy, G. K., (Elsevier, North-Holland, 1979), p. 431.Google Scholar
17. Delmas, C., Cherkaoui, F., Hagenmuller, P., Mat. Res. Soc. Bull. 21, 469 (1986).Google Scholar
18. Yegor‘kova, O., Krukova-Orlova, A I., Stefanovsky, S.V., in Proceedings of the Fifth International Conference On Radioactive Waste Management and Environmental Remediation: ICEM'95, (Berlin, 1995), p. 413.Google Scholar
19. Hagman, L-O., Kierkegaard, P., Acta Chem. Scand. 22, 1822 (1968).Google Scholar
20. Nizamutdinov, NM., Bulka, G.R., Gainullina, N.M., Vinokurov, V.M., in Physical Properties of Minerals and Rocks (Russ.), (Kazan, 1976), p. 3.Google Scholar
21. Che, M., Tench, A.J., Adv. in Catalysis, 32, 1 (1983).Google Scholar
22. Kliava, J. G., EPR Spectroscopy of Disordered Solids (Russ.), (Zinatne, Riga, 1988), p.55.Google Scholar
23. Sherbakova, M. Ya., Istomin, V.E., Phys. Stat. Sol. (b) 67, 461 (1975).Google Scholar