Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T12:09:28.848Z Has data issue: false hasContentIssue false

Epitaxial Growth of LaVO3/(Ba,Sr)TiO3/(Pb,La)(Zr,Ti)O3/(La,Sr)CoO3 Semiconductor/Ferroelectric/Conductor Heterostructures

Published online by Cambridge University Press:  17 March 2011

Woong Choi
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, CA 94720
Tim Sands
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, CA 94720
Get access

Abstract

The feasibility of using LaVO3 as a semiconducting layer in all-oxide semiconductor/ferroelectric/conductor heterostructures was explored by growing epitaxial LaVO3/(Ba,Sr)TiO3/(Pb,La)(Zr,Ti)O3/(La,Sr)CoO3 heterostructures on (001) LaAlO3 single crystal substrates by pulsed laser deposition. A high degree of c-axis orientation and strong in-plane texture revealed by x-ray diffraction indicated the epitaxial crystallographic relationships between the layers. With a 30 nm layer of (Ba,Sr)TiO3, the heterostructure showed optimal ferroelectric hysteresis with remanent polarizations over 30 C/cm2. The capacitance measurement as a function of voltage might reveal the modulation of the depletion layer in the semiconducting LaVO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ramesh, R., Inam, A., Chan, W., Wilkens, B., Myers, K., Remschning, K., Hart, D. and Tarascon, J., Science 252, 944 (1991).Google Scholar
2. Eom, C., Cava, R., Fleming, R., Phillips, J., Dover, R. van, Marshall, J., Hsu, J., Krajewski, J. and Peck, W. Jr., Science 258, 1766 (1992).Google Scholar
3. Ahn, C., Triscone, J., Ardchibald, N., Decroux, M., Hammond, R., Geballe, T., Fisher, O. and Beasley, M., Science 269, 373 (1995).Google Scholar
4. Watanabe, Y., Appl. Phys. Lett. 66, 1770 (1995).Google Scholar
5. Mathews, S., Ramesh, R., Venkatesan, T. and Benedetto, J., Science 276, 238 (1997).Google Scholar
6. Kim, S. and Lee, J., Integr. Ferroel. 18, 405 (1997).Google Scholar
7. Evans, J. Jr., Suizu, R. and Boyer, L., Appl. Surf. Sci. 117/118, 413 (1997).Google Scholar
8. Grishin, A., Khartsev, S. and Johnsson, P., Appl. Phys. Lett. 74, 1015 (1999).Google Scholar
9. Wu, S., IEEE Trans. Elect. Devices 21, 499 (1974).Google Scholar
10. Prasad, E., Sayer, M. and Noad, J., Phys. Rev. B 19, 5144 (1979).Google Scholar
11. Choi, W., Sands, T. and Kim, K., J. Mater. Res. 15, 1 (2000).Google Scholar
12. Kingon, A., Streiffer, S., Basceri, C. and Summerfelt, S., MRS Bull. 21 (7), 46 (1996).Google Scholar
13. JCPDS Powder Diffraction File, International Center for Diffraction Data, Newton Square, PA 1994, JCPDS numbers 11-24, 44-93, 36-1394, 31-22.Google Scholar
14. , Landolt-Börnstein, in Numerical Data and Functional Relationships in Science and Technology, edited by Hellwege, K. and Hellwege, A. (Springer, Berlin, 1981), 16, p. 427.Google Scholar