Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T21:22:56.643Z Has data issue: false hasContentIssue false

Ensemble Monte Carlo Study of Electron Transport in Bulk Indium Nitride

Published online by Cambridge University Press:  15 February 2011

E. Bellotti
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, kbrennan@ece.gatech.edu
B. Doshi
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, kbrennan@ece.gatech.edu
K. F. Brennan
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, kbrennan@ece.gatech.edu
P. P. Ruden
Affiliation:
Dept. of ECE, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Ensemble Monte Carlo calculations of electron transport at high applied electric field strengths in bulk, wurtzite phase InN are presented. The calculations are performed using a full band Monte Carlo simulation that includes a pseudopotential band structure, all of the relevant phonon scattering agents, and numerically derived impact ionization transition rates. The full details of the first five conduction bands, which extend in energy to about 8 eV above the conduction band minimum, are included in the simulation. The electron initiated impact ionization coefficients and quantum yield are calculated using the full band Monte Carlo model. Comparison is made to previous calculations for bulk GaN and ZnS. It is found that owing to the narrower band gap in InN, a lower breakdown field exists than in either GaN or ZnS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weitzel, C., Pond, L., Moore, K., and Bhatnagar, M., Proc. Int. Conf. on Silicon Carbide, III-Nitrides and Related Materials, Aug 31- Sept. 5, 1997, Stockholm, Sweden.Google Scholar
2 Shenai, K., Scott, R. S., and Baliga, B. J., IEEE Trans. Electron Dev. 36, 1811 (1989).Google Scholar
3 Littlejohn, M. A., Hauser, J. R., and Glisson, T. H., Appl. Phys. Lett. 26, 625 (1975).Google Scholar
4 Gelmont, B., Kim, K., and Shur, M., J. Appl. Phys. 74, 1818 (1993).Google Scholar
5 Mansour, N. S., Kim, K. W., and Littlejohn, M. A., J. Appl. Phys. 77, 2834 (1995).Google Scholar
6 Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., Ruden, P. P., and Wang, Y., J. Appl. Phys. 78, 1033 (1995).Google Scholar
7 Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., Ruden, P. P., J. Appl. Phys. 81, 726 (1997).Google Scholar
8 Oguzman, I.H., Kolnik, J., Brennan, K. F., Wang, R., Fang, T.-N., and Ruden, P. P., J. Appl. Phys. 80, 4429 (1996).Google Scholar
9 Oguzman, I. H., Bellotti, E., Kolnik, J., Brennan, K. F., Wang, R., and Ruden, P. P., J. Appl. Phys. 81, 7827 (1997).Google Scholar
10 Albrecht, j. D., Wang, R. P., Ruden, P. P., Farahmand, M., and Brennan, K. F., J. Appl. Phys. 83, 4777 (1998).Google Scholar
11 O'Leary, S. K., Foutz, B. K., Shur, M. S., Bapkar, U. V., and Eastman, L. F., J. Appl. Phys. 83, 826 (1998).Google Scholar
12 Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., and Ruden, P. P., J. Appl. Phys. 79, 8838 (1996).Google Scholar
13 Lambrecht, W. R. L. and Segall, B., Properties of the Group III Nitrides, edited by Edgar, J. E. (INSPEC, IEE, London, 1994).Google Scholar
14 Chin, V. W., Tansley, T. L., and Osotchan, T., J. Appl. Phys. 75, 7365 (1994).Google Scholar
15 Yeo, Y.C., Chong, T. C., and Li, M.F., J. Appl. Phys. 83, 1429 (1998).Google Scholar
16 Ridley, B. K., Quantum Processes in Semiconductors, (Oxford, Oxford Univ. Press, 1982) p. 123.Google Scholar
17 Bellotti, E., Brennan, K. F., Wang, R., and Ruden, P. P., J. Appl. Phys. 83, 4765 (1998).Google Scholar