Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T06:11:49.186Z Has data issue: false hasContentIssue false

Enhancement in Electrical Properties of (Ba,Sr)TiO3 Films Using Tailored Oxide Electrodes

Published online by Cambridge University Press:  10 February 2011

Duck-Kyun Choi
Affiliation:
Dept. of Inorganic Materials Engineering, Hanyang University, 17 Haengdang-dong Seongdong-ku Seoul 133–791, Korea, duck@email.hanyang.ac.kr
Kyung-Woong Park
Affiliation:
Dept. of Inorganic Materials Engineering, Hanyang University, 17 Haengdang-dong Seongdong-ku Seoul 133–791, Korea, duck@email.hanyang.ac.kr
Jeong-Hee Park
Affiliation:
Dept. of Inorganic Materials Engineering, Hanyang University, 17 Haengdang-dong Seongdong-ku Seoul 133–791, Korea, duck@email.hanyang.ac.kr
Se-Hoon Oh
Affiliation:
Dept. of Inorganic Materials Engineering, Hanyang University, 17 Haengdang-dong Seongdong-ku Seoul 133–791, Korea, duck@email.hanyang.ac.kr
Boum-Seock Kim
Affiliation:
Dept. of Inorganic Materials Engineering, Hanyang University, 17 Haengdang-dong Seongdong-ku Seoul 133–791, Korea, duck@email.hanyang.ac.kr
Jae-Bok Lee
Affiliation:
Dept. of Inorganic Materials Engineering, Hanyang University, 17 Haengdang-dong Seongdong-ku Seoul 133–791, Korea, duck@email.hanyang.ac.kr
Get access

Abstract

Selection of a proper electrode for high dielectric material such as (Ba, Sr)TiO3 is a great concern because the deposition of BST requires a high temperature and an oxidizing atmosphere. In this study, we suggested the perovskite-type electrodes, which provide a structural match with the BST dielectric material, under the recognition that the high leakage current is associated with the structural mismatch between BST and the electrode. We studied the (Ca,Sr)RuO3 electrode of which the lattice parameter can be tuned to fit into BST by changing the Ca/Sr ratio. We also studied (Ba,Sr)RuO3 electrode which is not only structurally identical but also chemically similar to BST. In addition, the effect of doping in the BSR electrode was investigated to minimize the leakage current by proper modulation of the barrier height. The electrodes were directly deposited on an Si substrate and all the films in the experiments were deposited by RF magnetron sputtering technique. Electrical properties were measured from MIM structure. The main focus was to address the effect of Ca/Sr and Ba/Sr ratio variations in the electrodes on the resulting dielectric constant and the leakage current. The interface characteristics between the BST film and the electrode were examined in order to interpret the electrical properties of BST films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J. F., Kammerdiner, L., Parris, M., Tryner, S.. Ottenbacher, V., IEEE, 356– (1992).Google Scholar
2. Abe, K. and Komatsu, S.. J. Appl. Phys. 77. 6461 (1995).10.1063/1.359120Google Scholar
3. Lee, K. P., Park, Y. S.. Ko, D. H., Hwang, C. S. and Lee, J. G., ibid, 907Google Scholar
4. Miyasaka, Y. and S. Matsubara: Proceedings of the 1990 IEEE 7th International Symposium on the Applications of Ferroelectrics (IEEE Service Center, Piscataway, 1991), p. 121.Google Scholar
5. Yamamichi, S., Sakuma, T., Hase, T., and Miyasaka, Y., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Materials Research Society, Pittsburgh, 1992). Vol. 243, p. 297.Google Scholar
6. Paek, S.H., Won, J.H.. Lee, K.S., Choi, J.S.. Park, C.S.: Jpn. J. Appl. Phys. Wol.35. Part, No. 11,, p.5757. (1996)10.1143/JJAP.35.5757Google Scholar
7. Takemura, K., Sakuma, T.. Matsubara, S., Yamamichi, S., Yamaguchi, H. and Miyasaka, Y.: Proc. 4th Int. Symp. Integrated Ferroelectrics. Monterey, 1992, p.481.Google Scholar
8. Ryden, W.D. and Lawson, A. W.: Phys.Rev. B. 1 p. 1494. (1970)10.1103/PhysRevB.1.1494Google Scholar
9. vadimsky, R.G., Frankenthal, R.P. and Thompson, D.E.: J. Electrochem. Soc.. 132 (1085) p.2077.Google Scholar
10. Wei Pan and Seshu B. Desu: J. Vac. Sci. Technol. B 12 (6) p.3208(1994).10.1116/1.587501Google Scholar
11. Parker, L.H. and Tasch, A.F., IEEE Cir. Dev. Mag. (1), 17(1990).10.1109/101.47582Google Scholar
12. Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, Julia M., Dorver, R. B. van, Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F., Jr. SCIENCE, 258, 1766 (1992).10.1126/science.258.5089.1766Google Scholar
13. Son, S. Y., Kim, B. S., and Choi, D. K.: Korea. J. Phys. Soc., Vol. 32, S1517 (1998).Google Scholar
14. Abe, K. and Komatsu, S.: Jpn. J. Appl. Phys Vol. 32, 4186– (1993).10.1143/JJAP.32.4186Google Scholar
15. Jia, Q. X., Chang, L. H. and Anderson, W. A.: J. Mater. Res., Vol. 9, No. 10. P. 2561(1994).10.1557/JMR.1994.2561Google Scholar
16. Choi, D. K., Kim, B. S., Son, S. Y. and Oh, S. H.. (submitted to J. Appl. Phys.)Google Scholar
17. Shimada, Y., Inoue, A., Nasu, T., Nagano, Y.. Matsuda, A., Arita, K., Uemoto, Y., Fujii, E. and Otsuki, T., Jpn. J. Apply. Phys. 35 p. 4919 (1996)10.1143/JJAP.35.4919Google Scholar
18. Dietz, G. W., Antphler, W., Klee, M. and Waser, R., J. Appl. Phys. 78 p. 6113 (1995)10.1063/1.360553Google Scholar
19. Jeon, M. S. and Choi, D. K., J. Vac. Sci. Technol., B 15 (4) p. 928 (1997)10.1116/1.589510Google Scholar
20. Hwang, C. S., Park, S. O., Cho, H. J., Kang, C. S., Kang, H. K., Lee, S. I. and Lee, M. Y., Appl. Phys. Lett. 67 (19), 6 November p.2819 (1995)10.1063/1.114795Google Scholar
21. Hsu, W. Y., Luttmer, J. D., Tsu, R., Summerfelt, S., Bedekar, M., Tokumoto, T. and Nulman, J., Appl. Phys. Lett. 66 (22), 29 May p.2975 (1995)10.1063/1.114248Google Scholar
22. Hwang, C. S., Lee, B. T., Park, S. O., Kim, J. W., Cho, H. J., Kang, C. S., Horii, H., Lee, S. I. and Lee, M. Y., Ineg. Ferroelectrics 13 p. 157 (1996)10.1080/10584589608013090Google Scholar
23. Joo, J. H., Seon, J. M., Jeon, Y C., Oh, K. Y.. Roh, J. S., Kim, J. J. and Choi, J. T., Jpn. J. Appl. Phys. 37 p. 3041 (1998)10.1143/JJAP.37.3396Google Scholar