Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-11T10:07:18.233Z Has data issue: false hasContentIssue false

Enhanced thermal Properties and Gas Barrier Property of PMMA Nanocomposites with Layered Silicate via Soap-Free Emulsion Polymerization

Published online by Cambridge University Press:  01 February 2011

Hsiu-Yu Cheng
Affiliation:
chenghsiuyu@itri.org.tw, industrial technology research institute, Polymer Hybrid, Rm. 554, Bldg. 6, 321, Kuang Fu Rd., Sec. 2,, hsinchu, 300, Taiwan, 886-3-5732794, 886-3-5732351
Guang-Way William Jang
Affiliation:
billjang@itri.org.tw, Industrial Technology Research Institude, Polymer Hybrid, Rm. 534, Bldg 6, 321, Kuang Fu Rd., Sec. 2,, Hsinchu, 300, Taiwan
Get access

Abstract

Polymer/SWN nanocomposites were synthesized in the soap-free emulsion polymerization of methyl methacrylate (MMA) using 2-hydroxylethyl methacrylate (HEMA). The SWN in the polymer/SWN nanocomposites was individually dispersed in water, and these are adsorbed on the surface of monomer droplets. Polymer/SWN nanocomposites were obtained by adding an aqueous dispersion of layered silicate to the polymer emulsion. X-ray diffraction (XRD) and FT-IR spectra were utilized to characterize the structures of the nanocomposites. The degree of dispersion of these nanocomposites was investigated by transmission electron microscopy (TEM). Furthermore, the thermal and mechanical properties of polymer/SWN nanocomposites were determined using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and dynamic mechanical analysis (DMA). The increased tanδ of the obtained nanocomposites is caused by the fine dispersion of SWN particles into the polymer matri

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choi, Yeong Suk, Choi, Min Ho, Wang, Ki Hyun, Kim, Sang Ouk, Kim, Yoon Kyung, In Jae Chung, Macromolecules, 2001,|34, 8978 Google Scholar
2. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Harris, R. Jr;Manias, E.; Giannelis, E. P.; Wuthenow, M.; Hilton, D.;Philips, S. H., Chem. Mater,. 2000, 12, 1866.Google Scholar
3. Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. Chem. Mater,.2001, 13,3774.Google Scholar
4. Zhu, J.; Wilkie, C. A. Polym. Int., 2000, 49, 1158.Google Scholar
5. Zhu, J.; Uhl, F. M.; Morgan, A. B.; Wilkie, C. A. Chem. Mater,2001, 13, 46494654.Google Scholar
6. Gilman, J. W.; Kashiwagi, T.; Giannelis, E. P.; Manias, E.; Lomakin, S.; Lichtenham, J. D.; Jones, P. In Fire Retardancy of Polymers, The Use of Intumescence; Le Bras, M., Camino, G., Bourbigot, S., Delobel, R., Eds.; Royal Society of Chemistry:Cambridge, England,1998; 203.Google Scholar
7. Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y. H.; Kotaka, T.; Tateyama, H. Polymer, 2000, 41, 3887.Google Scholar
8. Noh, M. W.; Lee, D. C. Polym. Bull. (Berlin), 1999, 42, 619.Google Scholar
9. Kojima, Y.; Usuki, A.; Kawasukmi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Polym Sci Part A: Polym Chem, 1993, 31, 1755.Google Scholar
10. Wang, Z.; Pinnavaia, T. J Chem Mater, 1998, 10, 1820.Google Scholar
11. Burnside, S. D.; Giannelis, E. P. Chem Mater, 1998, 7, 1597.Google Scholar
12. Noh, M. W.; Lee, D. L. Polym Bull, 1999, 42, 619.Google Scholar
13. Noh, M. H.; Jang, L. W.; Lee, D. C. J Appl Polym Sci, 1999, 74, 179.Google Scholar