Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T05:57:28.329Z Has data issue: false hasContentIssue false

Enabling the Double-C Curve in Pu-Ga Alloy Time-Temperature-Transformation Diagrams

Published online by Cambridge University Press:  01 February 2011

Jason R. Jeffries
Affiliation:
blobaum1@llnl.gov, Lawrence Livermore National Laboratory, Chemistry, Materials, Earth, and Life Sciences Directorate, 7000 East Avenue, L-350, Livermore, CA, 94550, United States
Kerri J. M. Blobaum
Affiliation:
blobaum1@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
Mark A. Wall
Affiliation:
wall1@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
Adam J. Schwartz
Affiliation:
schwartz6@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
Get access

Abstract

Under ambient conditions, a Pu-2.0 at.% Ga alloy is retained in the metastable δ phase. Upon cooling to approximately -120 °C, the face-centered-cubic δ phase partially transforms to the metastable monoclinic α′ phase via a martensitic transformation. The kinetics of the δ⟶α′ transformation are reported to have double-C curve kinetics in a time-temperature-transformation (TTT) diagram, but the mechanisms responsible for this unusual behavior are not understood. Our work focuses on determining the underlying cause of the two noses. Optical microscopy has been used to investigate the role of “conditioning”—an isothermal hold at sub-anneal temperatures—on the δ⟶α′ transformation and to illuminate any disparities in transformation products. Conditioning was found to affect substantially the amount of transformation that occurs at particular points corresponding to both the upper- and lower-C of the TTT diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hecker, S. S. Los Alamos Sci. 26, 291335 (2000).Google Scholar
2 Turchi, P. E. A. Kaufman, L. Zhou, S. and Liu, Z.-K. J. Alloy Compd. 444-445, 2835 (2007).Google Scholar
3 Orme, J. T. Faiers, M. E. and Ward, B. J. in Plutonium 1975 and Other Actinides, edited by Blank, H. and Lindner, R. North Holland Publishing Company, Amsterdam, 1975, pp. 761773.Google Scholar
4 Deloffre, P. Truffier, J. L. and Falanga, A. J. Alloy Compd. 271-273, 370373 (1998).Google Scholar
5 Deloffre, P. Ph.D. Thesis, Université Paris XI Orsay, 1997.Google Scholar
6 Oudot, B. Blobaum, K. J. M., Wall, M. A. and Schwartz, A. J. J. Alloy Compd. 444-445, 230235 (2007).Google Scholar
7 Blobaum, K. J. M. Krenn, C. R. Wall, M. A. Massalski, T. B. and Schwartz, A. J. Acta Mater. 54, 40014011 (2006).Google Scholar
8 Mitchell, J. N. Gibbs, F. E. Zocco, T. G. and Pereyra, R. A. Metall. Mater. Trans. A 32A, 649659 (2001).Google Scholar
9 Haslam, J. J. Wall, M. A. Johnson, D. L. Mayhall, D. J. and Schwartz, A. J. in Electrically Based Microtructural Characterization III, Gerhardt, R. A. ed., Materials Research Society Symposia Proceedings, Washabaugh, A. P. Alim, M. A. and Choi, G. M. eds., Materials Research Society, Pittsburgh, PA, 2002, vol. 699, pp. 295300.Google Scholar
10 Blobaum, K. J. M., Krenn, C. R. Mitchell, J. N. Haslam, J. J. Wall, M. A. Massalski, T. B. and Schwartz, A. J., Metall. Mater. Trans. A 37A, 567577 (2006).Google Scholar
11 Zocco, T. G. Stevens, M. F. Adler, P. H. Sheldon, R. I. and Olson, G. B. Acta Metall. Mater. 38, 22752282 (1990).Google Scholar
12See, for example, Aaronson, H. I. Metall. Mater. Trans. 33, 22852297 (2002).Google Scholar