Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T08:09:27.681Z Has data issue: false hasContentIssue false

Ellipsometric Monitoring of Defects Induced by Electron Cyclotron Resonance Etching of GaAs

Published online by Cambridge University Press:  26 February 2011

P. G. Snyder
Affiliation:
Center for Microelectronic and Optical Materials Research, and Dept. of Electrical Engineering, U. Nebraska-Lincoln, Lincoln, NE 68588–0511
N. J. Ianno
Affiliation:
Center for Microelectronic and Optical Materials Research, and Dept. of Electrical Engineering, U. Nebraska-Lincoln, Lincoln, NE 68588–0511
B. Wigert
Affiliation:
Center for Microelectronic and Optical Materials Research, and Dept. of Electrical Engineering, U. Nebraska-Lincoln, Lincoln, NE 68588–0511
S. Pittal
Affiliation:
J.A. Woollam Co., Suite 39, 650 J St., Lincoln, NE 68508
B. Johs
Affiliation:
J.A. Woollam Co., Suite 39, 650 J St., Lincoln, NE 68508
J. A. Woollam
Affiliation:
J.A. Woollam Co., Suite 39, 650 J St., Lincoln, NE 68508
Get access

Abstract

Spectroscopic ellipsometry (SE) measurements were made during and after electron cyclotron resonance (ECR) etching of GaAs. The spectral range for ex situ measurements, 1.24–5 eV, included the E1, E1+A1 critical points. The Ej, Ei+Aj structure was red shifted by about 50 meV, and broadened, by etching with a mixture of methane, argon, and hydrogen. Exposure to a pure H2 plasma caused greater red shifting and broadening, while a pure Ar ECR plasma produced only a slight red shift. The red shift is consistent with an increase in lattice constant of the order of 1%, in the top 10-30 nm. Broadening is consistent with crystalline lattice damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Constantine, C., Johnson, D., Pearton, S.J., Chakrabarti, U.K., Emerson, A.B., Hobson, W.S., and Kinsella, A.P., J. Vac. Sci. Technol. B8, 596 (1990).Google Scholar
2. Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).Google Scholar
3. Jellison, G.E. Jr., Appl. Opt. 30, 3354 (1991).Google Scholar
4. Aspnes, D.E., Theeten, J.B., Hottier, F., Phys. Rev. B20, 3292 (1979).Google Scholar
5. The tabulated GaAs optical constants used here were obtained by simultaneous fitting of data published by Aspnes and Jellison, and data measured at U. Nebraska-Lincoln.Google Scholar
6. Erman, M., Theeten, J.B., Chambon, P., Kelso, S.M., Aspnes, D.E., J. Appl. Phys. 56, 2664 (1984).Google Scholar
7. Lautenschlager, P., Garriga, M., Logothetidis, S., Cardona, M., Phys. Rev. B35, 9174 (1987).Google Scholar
8. Yao, H., Snyder, P.G., Woollam, J.A., J. Appl. Phys. 70, 3261 (1991).Google Scholar
9. Pollak, F.H., Semiconductors and Semimetals 32, edited by Pearsall, T.P., p.40 (Academic Press, Boston, 1990).Google Scholar
10. Weegels, L.M., Saitoh, T., Oohashi, H., and Kanbe, H., Appl. Phys. Lett. 64, 2661 (1994).Google Scholar
11. Weegels, L.M., Saitoh, T., Kanbe, H., Appl. Phys. Lett. 65, 3117 (1994).Google Scholar
12. Ianno, N.J., Nafis, S., Snyder, P.G., Johs, B., and Woollam, J.A., Appl. Surf. Sci. 63, 17 (1993).Google Scholar
13. Nafis, S., Ianno, N.J., Snyder, P.G., McGahan, W.A., Johs, B., and Woollam, J.A., Thin Solid Films 233, 253 (1993).Google Scholar
14. Hayes, T.R., Dreisbach, M.A., Thomas, P.M., Dautremont-Smith, W.C., and Heimbrook, L.A., J. Vac. Sci. Technol. B7, 1130 (1989).Google Scholar
15. Gheorghiu, A. and Theye, M.-L., Phil. Mag. B44, 285 (1981).Google Scholar