Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T00:26:42.528Z Has data issue: false hasContentIssue false

Elimination of Quantum Dots Cell Uptake

Published online by Cambridge University Press:  31 January 2011

Hengyi Xu
Affiliation:
hxu@oceannanotech.com, Ocean NanoTech, Springdale, Arkansas, United States
Zoraida Pascual Aguilar
Affiliation:
zaguilar@oceannanotech.comzapaguilar@yahoo.com, Ocean NanoTech, LLC, Springdale, Arkansas, United States
Ben Jones
Affiliation:
bjones@oceannanotech.com, Ocean NanoTech, Springdale, Arkansas, United States
Hua Wei
Affiliation:
awang@oceannanotech.com, Ocean NanoTech, Springdale, Arkansas, United States
Andrew Wang
Affiliation:
hua_wei114@yahoo.com.cn, Nanchang University, State Key Laboratory of Food Science and Technology, Nanchang, China
Get access

Abstract

The nanotechnology is undergoing enormous attention in the areas of biological research for clinical, environmental, and life sciences applications. One of the products from this new technology that attracts researcher’s attentions is the semiconductor quantum dot (QDs) nanoparticles, QDs possess incomparable advantages such as unique size-dependent physical properties, broad absorption spectrum, precise small bandwidth emission wavelength, as well as enhanced chemical and photochemical stability. The QDs can be modified for a controlled and enhanced endocytosis, enhanced cooperative binding activity, and easy introduction of multi-functionalities for medical applications such as targeted delivery and imaging. It can be used for complex studies that play very important roles in the modern biomedical researches. However, when performing the cell related assays, the non-specific cellular uptake of QDs is a major concern because they can lead to false positives or false results. In our study, we used different surface modified QDs treated with different blocking buffers to eliminate cellular uptake. The preliminary results showed that the cellular uptake of QDs can be eliminated by surface modification of the QD materials and by performing the assays in the presence of blocking buffers. As a result of the elimination of non-specific uptake of QDs the sensitivity and specificity of detection increased significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Griffitt, R.; Weil, R.; Hyndman, K.; Denslow, N.; Powers, K.; Taylor, D. and Barber, D.. Environmental Science & Technology. 41, 81788186 (2007).Google Scholar
2 Brumfiel, G.. Nature. 440, 262 (2006).Google Scholar
3 Rosiand, N. Mirkin, C.. Chemical Reviews. 105, 15471562 (2005).Google Scholar
4 Medintz, I.; Uyeda, H.; Goldman, E. and Mattoussi, H.. Nature Materials. 4, 435446 (2005).Google Scholar
5 Reactivity, C.. Angewandte Chemie International Edition. 43, 60426108 (2004).Google Scholar
6 Chanand, W. Nie, S.. Science. 281, 2016 (1998).Google Scholar
7 Bruchez, M. Jr ; Moronne, M.; Gin, P.; Weiss, S. and Alivisatos, A.. Science. 281, 20132016 (1998).Google Scholar
8 Chan, W.; Maxwell, D.; Gao, X.; Bailey, R.; Han, M. and Nie, S.. Current Opinion in Biotechnology. 13, 4046 (2002).Google Scholar
9 Parak, W.J.; Boudreau, R.; Gros, M.L.; Gerion, D.; Zanchet, D.; Micheel, C.M.; Williams, S.C.; Alivisatos, A.P. and Larabell, C.. Advanced Materials. 14, 882885 (2002).Google Scholar
10 Hanaki, K.; Momo, A.; Oku, T.; Komoto, A.; Maenosono, S.; Yamaguchi, Y. and Yamamoto, K. Biochemical and Biophysical Research Communications. 302, 496501 (2003).Google Scholar
11 Jaiswal, J.; Mattoussi, H.; Mauro, J. and Simon, S.. Nature Biotechnology. 21, 4751 (2003).Google Scholar
12 Wu, X.; Liu, H.; Liu, J.; Haley, K.; Treadway, J.; Larson, J.; Ge, N.; Peale, F. and Bruchez, M.. Nature Biotechnology. 21, 4146 (2003).Google Scholar
13 Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B. and Triller, A.. Science. 302, 442445 (2003).Google Scholar
14 Akerman, M.; Chan, W.; Laakkonen, P.; Bhatia, S. and Ruoslahti, E.. Proceedings of the National Academy of Sciences of the United States of America. 99, 12617 (2002).Google Scholar
15 Dubertret, B.; Skourides, P.; Norris, D.; Noireaux, V.; Brivanlou, A. and Libchaber, A. Science. 298, 1759 (2002).Google Scholar
16 Larson, D.; Zipfel, W.; Williams, R.; Clark, S.; Bruchez, M.; Wise, F. and Webb, W.. Vivo Science. 300, 14341436 (2003).Google Scholar
17 Caroline, S.. Science. 300, 8081 (2003).Google Scholar
18 Mancini, M.; Kairdolf, B.; Smith, A. and Nie, S.. Journal of the American Chemical Society. 130, 1083610837 (2008).Google Scholar
19 LHand, Q. Peng, X.. J Am Chem Soc. 124, 20492055 (2002).Google Scholar
20 Smith, A.; Duan, H.; Rhyner, M.; Ruan, G. and Nie, S.. Physical Chemistry Chemical Physics. 8, 38953903 (2006).Google Scholar
21 Gao, X.; Cui, Y.; Levenson, R.; Chung, L. and Nie, S.. Nature Biotechnology. 22, 969976 (2004).Google Scholar