Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-14T07:04:44.389Z Has data issue: false hasContentIssue false

The Electronic Properties of Epitaxial Calcium Fluoride-Silicon Structures

Published online by Cambridge University Press:  26 February 2011

T. P. Smith III
Affiliation:
Department of Physics, Brown University, Providence, R.I. 02912
J. M. Phillips
Affiliation:
AT&T Bell Laboratories, Murry Hill, NJ 07974
R. People
Affiliation:
AT&T Bell Laboratories, Murry Hill, NJ 07974
J. M. Gibson
Affiliation:
AT&T Bell Laboratories, Murry Hill, NJ 07974
L. Pfeiffer
Affiliation:
AT&T Bell Laboratories, Murry Hill, NJ 07974
P. J. Stiles
Affiliation:
Department of Physics, Brown University, Providence, R.I. 02912
Get access

Abstract

The characterization of electronic devices using epitaxial CaF2 on Si is described. In addition, the growth and annealing techniques used to obtain high quality epitaxial films are discussed. In particular, the results of using rapid thermal annealing to improve the epitaxial quality of CaF2 films are presented in detail.

The electronic and electrical properties of these structures are very promising. Epitaxial CaF2 films with breakdown fields as high as 3 × 106 V/cm and interface trap densities as low as 7 × 1010cm-2eV-1 have been fabricated. In addition, minority carrier dominated trapping has been observed at the CaF2 /Si interface. Finally, the material properties of these structures, as determined by Rutherford backscattering, channeling, and electron microscopy, are discussed and correlated with their electronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Phillips, J. M., MRS Symp. Proc. 37, 145 (1985) and references therein.Google Scholar
2. Laughlin, R. B., Joannopoulos, J. D., and Chadi, D. J., Phys. Rev. B 21, 5733 (1980).Google Scholar
3. Asano, T., and Ishiwara, H., Thin Sol. Films 93, 143 (1982).Google Scholar
4. Fathauer, R. W. and Schowalter, L. J., Appl. Phys. Lett. 45, 519 (1984).Google Scholar
5. Phillips, J. M. and Yashinovitz, C., J. Vac. Sci. Technol. A2, 415 (1984).Google Scholar
6. Schowalter, L. J., Fathauer, R. W., and Krusius, J. P., Proc. Istinti. Symp. on Si MBE, pp. 311314 (The Electrochemical Society, 1985).Google Scholar
7. Phillips, J. M., Manger, M. L., Pfeiffer, L., Joy, D. C., Smith, T. P. III, Augustyniak, W. M., and West, K. W., to be published in the Proceedings of the Symposium on Semiconductor on Insulator and Thin Film Transistor Technology (Materials Research Society, December 2–7, 1985).Google Scholar
8. People, R., Smith, T. P. III, Phillips, J. M., Augustyniak, W. M., and Wecht, K. W., Mat. Res. Soc. Symp. Proc. 37, 169 (1985).Google Scholar
9. Goetzberger, A., CRC Critical Rev. in Sol. State Phys. 6, 1 (1976).Google Scholar
10. Smith, T. P. III, People, R., Phillips, J. M., Gibson, J. M., and Stiles, P. J., Mat. Res. Soc. Symp. Proc. 37, 164 (1985).Google Scholar
11. Kimerling, L. C., Benton, J. L., and Rubin, J. T., Conf. Ser. Inst. Phys. 59, 217 (1981).Google Scholar
12. Wright, S. L., Kroemer, H., and Inada, M., J. Appl. Phys. 55, 2916 (1984).Google Scholar
13. Phillips, J. M., Pfeiffer, L., Joy, D. C., Smith, T. P. III, Gibson, J. M., Augustyniak, W. M., and West, K. W., Proc. Istinti. Symp. on Si MBE, pp. 296303 (The Electrochemical Society, 1985).Google Scholar