Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T05:45:43.198Z Has data issue: false hasContentIssue false

Electronic Effects on Grain Boundary Structure in Bcc Metals

Published online by Cambridge University Press:  10 February 2011

Geoffrey H. Campbell
Affiliation:
University of California, Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, P.O. Box 808, Livermore, CA 94550
Wayne E. King
Affiliation:
University of California, Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, P.O. Box 808, Livermore, CA 94550
James Belak
Affiliation:
University of California, Lawrence Livermore National Laboratory, Physics Directorate, P.O.Box 808, Livermore, CA 94550
John A. Moriarty
Affiliation:
University of California, Lawrence Livermore National Laboratory, Physics Directorate, P.O.Box 808, Livermore, CA 94550
Stephen M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Get access

Abstract

The dominant factor in determining the atomic structure of grain boundaries is the crystal structure of the material, e.g. FCC vs. BCC. However, for a given crystal structure, the structure of grain boundaries can be influenced by electronic effects unique to the element comprising the crystal. Understanding and modeling the influence of electronic structure on defect structures is a key ingredient for successful atomistic simulations of materials with more complicated crystal structures than FCC. We have found that grain boundary structure is a critical test for interatomic potentials. To that end, we have fabricated the nominally identical Σ5 (310)/[001] symmetric tilt grain boundary in three different BCC metals (Nb, Mo, and Ta) by diffusion bonding precisely oriented single crystals. The structure of these boundaries have been determined by high resolution transmission electron microscopy. The boundaries have been found to have different atomic structures. The structures of these boundaries have been modeled with atomistic simulations using inter-atomic potentials incorporating angularly dependent d–state interactions, as obtained from Model Generalized Pseudopotential Theory. We report here new experimental and theoretical results for Ta

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xu, W. and Moriarty, J. A., Phys. Rev. B, 54 [10] 69416951 (1996).Google Scholar
2.Baskes, M. I., Phys. Rev. B, 46 [5] 27272742 (1992).Google Scholar
3.Foiles, S. M., Phys. Rev. B, 48 [7] 42874298 (1993).Google Scholar
4.Marinopoulos, A. G., Vítek, V. and Carlsson, A. E., Philos. Mag. A, 72 [5] 13111330 (1995).Google Scholar
5.Moriarty, J. A., Phys. Rev. B, 42 [3] 16091628 (1990).Google Scholar
6.Pettifor, D. G., Aoki, M., Gumbsch, P., Horsfield, A. P., Manh, D. Nguyen and Vítek, V., Mat. Sci. Eng.A, 192/193 2430 (1995).Google Scholar
7.Carlsson, A. E., Phys. Rev. B, 44 [13] 65906597 (1991).Google Scholar
8.Campbell, G. H., Foiles, S. M., Gumbsch, P., Rüihle, M. and King, W. E., Phys. Rev. Lett., 70 [4] 449452 (1993).Google Scholar
9.Campbell, G. H., Belak, J. and Moriarty, J. A., Acta Mater, in press.Google Scholar
10.Pirouz, P. and Ernst, F. in Metal -Ceramic Interfaces, edited by Rüihle, M., Evans, A. G., Hirth, J. P. and Ashby, M. F. (Pergamon Press, New York, 1990) pp. 199233.Google Scholar
11.King, W. E., Campbell, G. H., Coombs, A. W., Johnson, G. W., Kelly, B. E., Reitz, T. C., Stoner, S. L., Wien, W. L. and Wilson, D. M. in Joining and Adhesion of Advanced Inorganic Materials, edited by Carim, A. H., Schwartz, D. S. and Silberglitt, R. S. (Mat. Res. Soc. Symp. Proc. 314, Materials Research Society, Pittsburgh, PA, 1993) pp. 6167.Google Scholar
12.Moriarty, J. A., Phys. Rev. B, 38 [5] 31993231 (1988).Google Scholar
13.Moriarty, J. A., Phys. Rev. B, 49 [18] 1243112445 (1994).Google Scholar
14.Moriarty, J. A., Xu, W., Soderlind, P., Belak, J., Yang, L. H. and Zhu, J., J. Eng. Mater Tech., Trans. ASME, 121 120125 (1999).Google Scholar
15.Ochs, T., Elsässer, C., Mrovec, M., Vítek, V., Belak, J. and Moriarty, J. A., submitted to Philos. Mag. A.Google Scholar
16.Ochs, T., Beck, O., Elsässer, C. and Meyer, B., Philos. Mag. A, in press.Google Scholar
17.Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Oxford University Press, New York, 1987).Google Scholar
18.Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer -Verlag, Berlin, 1970).Google Scholar
19.Wien, W. L., Campbell, G. H. and King, W. E. in Microstructural Science, edited by Stevens, D. W., Clark, E. A., Zipperian, D. C. and Albrecht, E. D. (Microstructural Science 23, ASM International, Materials Park, OH, 1996) pp. 213218; presented at 28th International Metallography Society Convention.Google Scholar