Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T22:50:04.190Z Has data issue: false hasContentIssue false

Electronic and Optical Properties of Orientational Superlattices in Gainp Alloys

Published online by Cambridge University Press:  10 February 2011

Yong Zhang
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401 yzhang@nrel.gov
B. Fluegel
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
S. P. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
D. J. Friedman
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
J. F. Geisz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
J. M. Olson
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

We demonstrate the formation, and the electronic and optical properties of a novel type of semiconductor superlattice in spontaneously ordered GaInP alloys. The most frequently observed ordered structure in MOCVD grown GaInP has CuPt symmetry where the ordering directions occur in the two [111]B directions, corresponding to two distinct ordered variants. A new type of superlattice, termed an orientational superlattice, emerges as the ordered domains are stacked in a sequence whereby the ordering direction switches alternatively from the [111] direction in one domain to the [111] direction in the next domain. The novelty of this type of superlattice lies in that there is neither a band-gap nor an effective mass discontinuity along the superlattice axis. When the GaInP epilayer is grown on an exact (001) or [111]A tilt GaAs substrate, the two ordered variants are equally favorable. Thus, ordered domain twins appear in ordered GaInP epilayers. We present a comparitive study between the single-variant ordered structure and the double-variant ordered superlattice structure, using TEM and time-resolved differential absorption. We show that for a same order parameter, the band-gap of an orientational superlattice is higher than that of a single-variant ordered structure, and the in-plane optical anisotropy between the [110] and [110]B directions is greatly enhanced due to the superlattice effect. The experimental results are explained in terms of the band structure of the orientational superlattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gomyo, A. and Suzuki, T., Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
2.Kurimoto, T. and Hamada, N., Phys. Rev. B 40, 3889 (1989).Google Scholar
3.Mascarenhas, A., Kurtz, S., Kibbler, A. and Olson, J. M., Phys. Rev. Lett. 63, 2108 (1989).Google Scholar
4.Wei, S.-H and Zunger, A., Appl. Phys. Lett. 56, 662 (1990).Google Scholar
5.Mowbray, D. J., Hogg, R. A., Skolnick, M. S., DeLong, M. C., Kurtz, S. R. and Olson, J. M., Phys. Rev. B 46, 7232 (1992).Google Scholar
6.Alonso, R. G., Mascarenhas, A., Homer, G. S., Sinha, K., Zhu, J., Friedman, D. J., Bertness, K. A. and Olson, J. M., Solid State Commun. 88, 341 (1993).Google Scholar
7.Worth, R., Moritz, A., Geng, C., Scholz, F. and Hangleiter, , Phys. Rev. B 55, 1730 (1997).Google Scholar
8.Fluegel, B., Mascarenhas, A., Geisz, J. F. and Olson, J. M., Phys. Rev. B57, R6787 (1998).Google Scholar
9.Driessen, F. A. J. M., Bauhuis, G. J., Hageman, P. R., van Geelen, A. and Giling, L. J.. Phys. Rev. B 50, 17105 (1994).Google Scholar
10.Alsina, F., Mestres, N., Pascual, J., Geng, C., Ernst, P. and Scholz, F., Phys. Rev. B 53, 12994 (1996).Google Scholar
11.Laks, D. B., Wei, S. H. and Zunger, A., Phys. Rev. Lett. 69, 3766 (1992).Google Scholar
12.Ernst, P., Geng, C., Scholz, F. and Schweizer, H., Zhang, Yong and Mascarenhas, A., Appl. Phys. Lett. 67, 2347 (1995).Google Scholar
13.Zhang, Y., Mascarenhas, A., Ernst, P., Driessen, F. A. J. M., Friedman, D. J., Bertness, K. A. and Olson, J. M., J. Appl. Phys. 81, 6365 (1997).Google Scholar
14.Fluegel, B., Zhang, Y., Cheong, H. M., Mascarenhas, A., Geisz, J. F., Olson, J. M. and Duda, A., Phys. Rev. B 55, 13647 (1997).Google Scholar
15.Forrest, R. L., Golding, T. D., Moss, S. C., Zhang, Y., Geisz, J. F., Olson, J. M. and Mascarenhas, A., Phys. Rev. B58 (1998).Google Scholar
16.Morita, E., Ikeda, M., Kumagai, O. and Kaneko, K., Appl. Phys. Lett. 53, 2164 (1988).Google Scholar
17.Baxter, C. S., Stobbs, W. M. and Wilkie, J. H., J. Cryst. Grow. 112, 373 (1991).Google Scholar
18.Mascarenhas, A., Zhang, Yong, Alonso, R. G. and Froyen, S., Solid State Commun. 100, 47 (1996).Google Scholar
19.Zhang, Yong and Mascarenhas, A., Phys. Rev. B 55, 13100 (1997); Erratum, Phys. Rev. B56, 9975 (1997).Google Scholar
20.Zhang, Yong, Mascarenhas, A., Ahrenkiel, S. P., Friedman, D. J., Geisz, J. and Olson, J. M., Solid State Commun. 109, 99 (1998).Google Scholar
21.Fluegel, B., Mascarenhas, A., Geisz, J. and Olson, J. M., Phys. Rev. B57, R6787 (1998).Google Scholar
22.Kurtz, S. R., J. Appl. Phys. 74, 4130(1993).Google Scholar
23.Kwok, S. H., Yu, P. Y. and Uchida, K., Phys. Rev. B58, R13395 (1998).Google Scholar
24.Sapriel, J., Hassine, A., Phys. Rev. B56, R7112 (1997).Google Scholar
25.Munzar, D., Dobrocka, E., Vavra, I., Kudela, R., Harvanka, M. and Christensen, N. E., Phys. Rev. B 57, 4642 (1998).Google Scholar
26.Wei, S.-H., Zhang, S. B. and Zunger, A., Phys. Rev. B59, R2478 (1998).Google Scholar
27.Ahrenkiel, S. P. et al (to be published).Google Scholar
28.Friedman, D. J., Homer, G. S., Kurtz, Sarah R., Bertness, K. A., Olson, J. M. and Moreland, J., Appl. Phys. Lett. 65, 878 (1994).Google Scholar