Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T18:11:53.766Z Has data issue: false hasContentIssue false

Electronic and Optical Properties of Energetic Particle-Irradiated In-rich InGaN

Published online by Cambridge University Press:  01 February 2011

S.X. Li
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720
K.M. Yu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
R.E. Jones
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720
J. Wu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
W. Walukiewicz
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J.W. Ager III
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
W. Shan
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
E.E. Haller
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720
Hai Lu
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853
William J. Schaff
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853
W. Kemp
Affiliation:
Air Force Research Laboratory, Kirtland Air Force Base, Kirtland AFB, NM 87117
Get access

Abstract

We have carried out a systematic study of the effects of irradiation on the electronic and optical properties of InGaN alloys over the entire composition range. High energy electrons, protons, and 4He+ were used to produce displacement damage doses (Dd) spanning over five orders of magnitude. The free electron concentrations in InN and In-rich InGaN increase with Dd and finally saturate after a sufficiently high Dd. The saturation of carrier density is attributed to the formation of native donors and the Fermi level pinning at the Fermi Stabilization Energy (EFS), as predicted by the amphoteric native defect model. Electrochemical capacitance-voltage (ECV) measurements reveal a surface electron accumulation whose concentration is determined by pinning at EFS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Davydov, V. Yu., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt, F., Furthmueller, J., Harima, H., Mudryi, A. V., Aderhold, J., Semchinova, O., and Graul, J., Phys. Status Solidi B 229, R1 (2002).Google Scholar
[2] Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).Google Scholar
[3] Nanishi, Y., Saito, Y., and Yamaguchi, T., Jap. J. Appl. Phys. 42, 2549 (2003).Google Scholar
[4] Chen, Fei, Cartwright, A.N., Lu, Hai, and Schaff, William J., J.Cryst. Growth, 269, 10 (2004).Google Scholar
[5] Goldhahn, R., Winzer, A. T., Cimalla, V., Ambacher, O., Cobet, C., Richter, W., Esser, N., Furthmüeller, J., Bechstedt, F., Lu, Hai, and Schaff, W. J., Superlattices and Microstructures, 36, 591 (2004).Google Scholar
[6] Briot, O., Maleyre, B., Ruffenach, S., Gil, B., Pinquier, C., Demangeot, F., and Frandon, J., J. Cryst. Growth, 269, 22 (2004).Google Scholar
[7] Shubina, T.V., Ivanov, S.V., Jmerik, V. N., Solnyshkov, D. D.,Vekshin, V. A., Kop'ev, P. S., Vasson, A., Leymarie, J., Kavokin, A., Amano, H., Shimono, K., Kasic, A., and Monemar, B., Phys. Rev. Lett. 92, 117407 (2004).Google Scholar
[8] Yu, K. M., Liliental-Weber, Z., Walukiewicz, W., Li, S. X., Jones, R. E., Shan, W., Ager, J. W. III, Haller, E. E., Lu, Hai, and Schaff, William J., Appl. Phys. Lett. 86, 071910 (2005).Google Scholar
[9] Wu, J., Walukiewicz, W., Li, S. X., Armitage, R., Ho, J. C., Weber, E. R., Haller, E. E., Lu, Hai, Schaff, William J., Barcz, A., and Jakiela, R., Appl. Phys. Lett. 84, 2805 (2004).Google Scholar
[10] Wu, J., Walukiewicz, W., Yu, K. M., Shan, W., and Ager, J. W. III, Haller, E. E., Lu, Hai and Schaff, William J., Metzger, W. K., and Kurtz, Sarah, J. Appl. Phys. 94, 6477 (2003) and reference therein.Google Scholar
[11] Walukiewicz, W., Appl. Phys. Lett. 54, 2094 (1989).Google Scholar
[12] Walukiewicz, W., Physica B, 302, 123 (2001).Google Scholar
[13] Lu, H., Schaff, William J., Hwang, Jeonghyun, Wu, Hong, Koley, Goutam, and Eastman, Lester E., Appl. Phys. Lett. 79, 1489 (2001).Google Scholar
[14] Messenger, S. R., Summers, G. P., Burke, E. A., Walters, R. J., and Xapsos, M. A., Progress in Photovoltaics: Research and Applications. 9, 103 (2001).Google Scholar
[15] Messenger, S. R., Burke, E. A., Summers, G. P., Sapsos, M. A., Walters, R. J., Jackson, E. M., and Weaver, B. D., IEEE Trans. Nuclear Sci. 46, 1595 (1999).Google Scholar
[16] Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, vol. 1 Pergamon Press, New York (1985).Google Scholar
[17] Zawadzki, W. and Szyamañska, W., Phys. Stat. Sol. 45, 415 (1971).Google Scholar
[18] Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, Hai, and Schaff, William J., Phys. Rev. B 66, 201403 (2002).Google Scholar
[19] Blood, P., Semicond. Sci. Tech. 1, 7 (1986).Google Scholar
[20] Schaff, William J., Lu, Hai, Eastman, Lester F., Walukiewicz, Wladek, Yu, Kin Man, Keller, Stacia, Kurtz, Sarah, Keyes, Brian, and Ge, Lynn, ECS Fall 2004 Proceeding (in press).Google Scholar
[21] Arulkumaran, S., Egawa, T., Zhao, G.-Y., Ishikawa, H., Jimbo, T., and Umeno, M., Jpn. J. Appl. Phys. Part 2, 39, L351 (2000).Google Scholar
[22] Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Li, S.X., Haller, E.E., Lu, Hai, and Schaff, William J., Solid State Communications 127, 411 (2003).Google Scholar