Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-19T15:21:49.577Z Has data issue: false hasContentIssue false

Electron-beam-induced reactivation of Si dopants in hydrogenated and deuterated 2D AlGaAs heterostructures. Application to the fabrication of nanostructures

Published online by Cambridge University Press:  01 February 2011

L. Kurowski
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, UMR CNRS 8520, BP 69, Avenue Poincaré, 59652 Villeneuve d'Ascq cedex, France
S. Silvestre
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, UMR CNRS 8520, BP 69, Avenue Poincaré, 59652 Villeneuve d'Ascq cedex, France
D. Loridant-Bernard
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, UMR CNRS 8520, BP 69, Avenue Poincaré, 59652 Villeneuve d'Ascq cedex, France
E. Constant
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, UMR CNRS 8520, BP 69, Avenue Poincaré, 59652 Villeneuve d'Ascq cedex, France
M. Barbe
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A. Briand, 92195 Meudon cedex
J. Chevallier
Affiliation:
Laboratoire de Physique des Solides et de Cristallogénèse, UMR CNRS 8635, 1 place A. Briand, 92195 Meudon cedex
M. Constant
Affiliation:
Laboratoire de Spectrochimie Infrarouge et Raman, UMR CNRS 8516, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
Get access

Abstract

Hydrogen incorporation in n-type Si-doped GaAs epilayers is now a well-known process. This paper is devoted to the study of the stability of SiH (SiD) complexes when submitted to an electron beam in n-type Si-doped GaAs epilayer and also in 2D-AlGaAs heterostructures exposed to a hydrogen or deuterium plasma.

The results obtained by Hall effect measurements on hydrogenated and deuterated GaAs epilayers with different thicknesses (0.2 and 0.35νm) and Si planar-doped AlGaAs/GaAs/InGaAs heterostructures exposed to an electron beam with different injection energies (10 to 50 keV) are presented. On one hand, the reactivation of Si dopants strongly decreases when deuterium is used. On the other hand, the study of this reactivation versus injection energies of electrons suggests an energetic electron excitation effect rather than a minority carrier generation effect. In addition, for the 0.2νm thick GaAs epilayer and the 2D heterostructures, the free carrier density does not vary significantly for low electron densities, and as a consequence, the reactivation of the Si dopants occurs above an electron dose threshold. This phenomenon might be attributed to the filling of surface states as the dopants are progressively reactivated.

As a result, due to the electron dose threshold as well as their high electron mobility properties, Si planar-doped AlGaAs/GaAs/InGaAs heterostructures are particularly interesting to reactivate dopants, with a good spatial contrast, using an electron beam irradiation and the effects described in this paper could open the fabrication of high mobility 1D or 2D mesoscopic structures for electronic or optoelectronic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chevallier, J., Dautremont-Smith, W.C., Tu, C. W., Pearton, S.J., Appl. Phys. Lett., 47, pp. 108110, 1985 Google Scholar
2. Leitch, A.W.R., Prescha, Th., and Weber, J., Phys. Rev. B 44, 5912, 1991 Google Scholar
3. Constant, E., Bernard-Loridant, D., Mezière, S., Constant, M., and Chevallier, J., J. Appl. Phys. 85, 6526, 1999 Google Scholar
4. Chevallier, J., Barbé, M., Constant, E., Loridant-Bernard, D., and Constant, M., Appl. Phys. Lett. 75, 112, 1999 Google Scholar
5. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112, 1989 Google Scholar
6. Silvestre, S., Constant, E., Bernard-Loridant, D., and Sieber, B., Appl. Phys. Lett. 76, 2731, 2000 Google Scholar
7. Silvestre, S., Bernard-Loridant, D., Constant, E., Constant, M., Chevallier, J., Appl. Phys. Lett. 77, 3206, 2000 Google Scholar
8. Chevallier, J., Barbé, M., Constant, M., Bernard-Loridant, D., Constant, E., Silvestre, S., Superlattices and Microstructures, 27, 447, 2000 Google Scholar
9. Miyamoto, Y., Sogino, O., Mochizuki, Y., Appl. Phys. Lett., 75, 2915, 2000 Google Scholar
10. Tong, L., Larsson, J.A., Nolan, M., Murtagh, M., Greer, J.C., Barbe, M., Bailly, F., Chevallier, J., Silvestre, S., Loridant-Bernard, D., Constant, E., Constant, M., Nucl. Instr. and Meth. In Phys. Res. B 186, 234, 2002 Google Scholar
11. Barbé, M., Bailly, F., Chevallier, J., Silvestre, S., Loridant-Bernard, D., Kurowski, L., Constant, E., Constant, M., MRS 2002 Spring Meeting, April 1-5, San Francisco, 2002 Google Scholar
12. Hieke, K., Ulfward, M., Phys. Rev. B, 62, 24, 16727, 2000 Google Scholar