Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:01:33.921Z Has data issue: false hasContentIssue false

Electron Beam Effects during In-Situ Annealing of Self-Ion Irradiated Nanocrystalline Nickel

Published online by Cambridge University Press:  19 May 2015

Brittany Muntifering
Affiliation:
Northwestern University, Evanston, IL, USA Sandia National Laboratories, Albuquerque, NM, USA
Rémi Dingreville
Affiliation:
Sandia National Laboratories, Albuquerque, NM, USA
Khalid Hattar
Affiliation:
Sandia National Laboratories, Albuquerque, NM, USA
Jianmin Qu
Affiliation:
Northwestern University, Evanston, IL, USA
Get access

Abstract

Transmission electron microscopy (TEM) is a valuable methodology for investigating radiation-induced microstructural changes and elucidating the underlying mechanisms involved in the aging and degradation of nuclear reactor materials. However, the use of electrons for imaging may result in several inadvertent effects that can potentially change the microstructure and mechanisms active in the material being investigated. In this study, in situ TEM characterization is performed on nanocrystalline nickel samples under self-ion irradiation and post irradiation annealing. During annealing, voids are formed around 200 °C only in the area illuminated by the electron beam. Based on diffraction patterns analyses, it is hypothesized that the electron beam enhanced the growth of a NiO layer resulting in a decrease of vacancy mobility during annealing. The electron beam used to investigate self-ion irradiation ultimately significantly affected the type of defects formed and the final defect microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sassoli de Bianchi, M., Foundations of Science 18(2), 213243 (2013).10.1007/s10699-012-9298-3CrossRefGoogle Scholar
Egerton, R. F., Li, P. and Malac, M., Micron 35(6), 399409 (2004).CrossRefGoogle Scholar
Williams, D. B. and Carter, C. B., Transmission Electron Microscopy, 2nd ed. (Springer, 2009).10.1007/978-0-387-76501-3CrossRefGoogle Scholar
Rajasekhar, S., Ganesh, K. J., Hattar, K., Knapp, J. A. and Ferreira, P. J., Scripta Materialia 67(2), 189192 (2012).CrossRefGoogle Scholar
Brewer, L.N., Follstaedt, D.M., Hattar, K., Knapp, J.A., Rodriguez, M.A., and Robertson, I.M., Advanced Materials 22(10), 11611164 (2010).10.1002/adma.200904245CrossRefGoogle Scholar
Hattar, K., Bufford, D. C. and Buller, D. L., Nuclear Instruments & Methods in Physics Research Section B 338, 5665 (2014).10.1016/j.nimb.2014.08.002CrossRefGoogle Scholar
Ziegler, J. F., Ziegler, M. D. and Biersack, J. P., Nuclear Instruments & Methods in Physics Research Section B 268(11-12), 18181823 (2010).10.1016/j.nimb.2010.02.091CrossRefGoogle Scholar
Li, M., Kirk, M. A., Baldo, P. M., Xu, D. and Wirth, B. D., Philosophical Magazine 92(16), 20482078 (2012).10.1080/14786435.2012.662601CrossRefGoogle Scholar
Robertson, I. M., Vetrano, J. S., Kirk, M. A. and Jenkins, M. L., Philosophical Magazine A 63(2), 299318 (1991).CrossRefGoogle Scholar
Yoshida, N., Muroga, T., Watanabe, H., Araki, K. and Miyamoto, Y., Journal of Nuclear Materials 155-157, 12221226 (1988).CrossRefGoogle Scholar
Jencic, I., Bench, M. W., Robertson, I. M. and Kirk, M. A., Journal of Applied Physics 78(2), 974982 (1995).CrossRefGoogle Scholar
Lucasson, P. G. and Walker, R. M., Discussions of the Faraday Society 31, 5766 (1961).10.1039/df9613100057CrossRefGoogle Scholar
Li, W., Stirniman, M. J. and Sibener, S. J., Journal of Vacuum Science & Technology A 13(3), 15741578 (1995).10.1116/1.579730CrossRefGoogle Scholar
Wang, C. M., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J. J. and Qiang, Y., Ultramicroscopy 108(1), 4351 (2007).CrossRefGoogle Scholar