Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T11:46:40.575Z Has data issue: false hasContentIssue false

Electrochemical Functionalization in Wavefunction Engineering of Epitaxial Graphene

Published online by Cambridge University Press:  22 May 2014

Santanu Sarkar*
Affiliation:
Center for Nanoscale Science and Engineering, Department of Chemistry, University of California, Riverside, California, CA-92521, USA.
Get access

Abstract

Chemical modification of graphene web has attracted strong interest in engineering a band gap in graphene and in altering its magnetic and solubility properties. Electrochemical methods to functionalize graphene have emerged as attractive protocols to covalently modify graphene. Kolbe reaction, which involves the electrochemical oxidation of arylacetates (generation of α-naphthylmethyl radicals, in our present case), allows reversible grafting of radicals to graphene surface; the electro-erasing of the functional groups leads to graphene at its nearly pristine state. The surface coverage can be controlled from densely-packed (ideal as organic dielectrics) to sparsely functionalized surface (ideal for introducing reasonable band gap in graphene) with well-ordered structural patterning of the functional groups on EG surface by fine adjustment of electrochemical conditions. Such a control of the layer structure and packing of the functional groups over the graphene surface is an essential issue in the development of graphene chemistry.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Intel Corporation, Ronler Acres Campus, Hillsboro, Oregon, OR-97124, USA.

References

REFERENCES

Sarkar, S., Bekyarova, E., Haddon, R. C., Mater. Today 2012, 15, 276.CrossRefGoogle Scholar
Sarkar, S., Bekyarova, E., Haddon, R. C., Acc. Chem. Res. 2012, 45, 673.CrossRefGoogle Scholar
Bekyarova, E., Sarkar, S., Wang, F., Itkis, M. E., Kalinina, I., Tian, X., Haddon, R. C., Acc. Chem. Res. 2013, 46, 65.CrossRefGoogle Scholar
Sarkar, S., Bekyarova, E., Niyogi, S., Haddon, R. C., J. Am. Chem. Soc. 2011, 133, 3324.CrossRefGoogle Scholar
Sarkar, S., Niyogi, S., Bekyarova, E., Haddon, R. C., Chem. Sci. 2011, 2, 1326.CrossRefGoogle Scholar
Sarkar, S., Bekyarova, E., Haddon, R. C., Angew. Chem. Int. Ed. 2012, 51, 4901.CrossRefGoogle Scholar
Sarkar, S., Zhang, H., Huang, J.-W., Wang, F., Bekyarova, E., Lau, C. N., Haddon, R. C., Adv. Mater. 2013, 25, 1131.CrossRefGoogle Scholar
Sarkar, S., Moser, M. L., Tian, X., Haddon, R. C., Chem. Mater. 2014, 26, DOI: 10.1021/cm4025809.Google Scholar
Bekyarova, E., Itkis, M. E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W. A., Haddon, R. C., J. Am. Chem. Soc. 2009, 131, 1336.CrossRefGoogle Scholar
Ramesh, P., Itkis, M. E., Bekyarova, E., Wang, F., Niyogi, S., Chi, X., Berger, C., de Heer, W. A., Haddon, R. C., J. Am. Chem. Soc. 2010, 132, 1442914436.CrossRefGoogle Scholar
Hong, J., Bekyarova, E., Liang, P., de Heer, W. A., Haddon, R. C., Khizroev, S., Sci. Rep. 2012, 2, 624.CrossRefGoogle Scholar
Niyogi, S., Bekyarova, E., Itkis, M. E., Zhang, H., Shepperd, K., Hick, J., Sprinkle, M., Berger, C., Lau, C. N., de Heer, W. A., Conrad, E. H., Haddon, R. C., Nano. Lett. 2010, 10, 40614066.CrossRefGoogle Scholar
Itkis, M. E., Wang, F., Ramesh, P., Bekyarova, E., Niyogi, S., Chi, X., Berger, C., de Heer, W. A., Haddon, R. C., Appl. Phys. Lett. 2011, 98, 093115.CrossRefGoogle Scholar
Koehler, F. M., Jacobsen, A., Ensslin, K., Stampfer, C., Stark, W. J., Small 2010, 6, 1125.CrossRefGoogle Scholar
Niyogi, S., Bekyarova, E., Hong, J., Khizroev, S., Berger, C., de Heer, W. A., Haddon, R. C., J. Phys. Chem. Lett. 2011, 2, 2487.CrossRefGoogle Scholar
Loh, K. P., Bao, Q. L., Ang, P. K., Yang, J. X., J. Mater. Chem. 2010, 20, 2277.CrossRefGoogle Scholar
Bekyarova, E., Sarkar, S., Niyogi, S., Itkis, M. E., Haddon, R. C., J. Phys. D: Appl. Phys. 2012, 45, 154009.CrossRefGoogle Scholar