Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T07:10:32.944Z Has data issue: false hasContentIssue false

Electrochemical Deposition of Metals on Semiconductors

Published online by Cambridge University Press:  10 February 2011

Gerko Oskam
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University Baltimore, MD 21218, gerko@jhunix.hcf.jhu.edu
John G. Long
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University Baltimore, MD 21218, gerko@jhunix.hcf.jhu.edu
Maria Nikolova
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University Baltimore, MD 21218, gerko@jhunix.hcf.jhu.edu
Peter C. Searson
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University Baltimore, MD 21218, gerko@jhunix.hcf.jhu.edu
Get access

Abstract

The general concepts governing the electrochemical deposition of metal films on semiconductors are discussed, and recent results on the fabrication of Schottky junctions consisting of silicon electrodeposited with platinum, copper and gold are presented. In order to obtain good adherent metal films, the density of nuclei should be high and the films should be grown at low current densities where the charge transfer process is rate limiting. This situation can be realized using potential controlled electrochemical deposition. For metal deposition on silicon, the surface should be pretreated in HF to dissolve the oxide layer. Furthermore, the surface should be stable during deposition which can be achieved by tailoring the deposition solutions and by using electrochemical deposition at negative potentials. It is shown that by using this approach, n-type silicon / Pt, Au, and Cu Schottky junctions can be fabricated of a quality comparable to that of junctions prepared by sputter and vapor deposition techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Romankiw, L. T. and Palumbo, T. A., in: “Electrodeposition Technology, Theory and Practice”, Eds. Romankiw, L. T. and Turner, D. R., Electrochemical Society, Pennington, NJ (1988) p.13.Google Scholar
2. Searson, P. C. and Moffat, T. P., “Electrochemical Surface Modification and Materials Processing”, Critical Reviews in Surface Chemistry, 3, 171 (1994).Google Scholar
3. Allongue, P. and Souteyrand, E., J. Electroanal. Chem. 269, 361 (1989).Google Scholar
4. Allongue, P. and Souteyrand, E., J. Electroanal. Chem. 286, 217 (1990).Google Scholar
5. Allongue, P. and Souteyrand, E., J. Electroanal. Chem. 362, 79 (1993).Google Scholar
6. Heller, A., Aharon-Shalom, E., Bonner, W. A., and Miller, B., J. Am. Chem. Soc. 104, 6942 (1982).Google Scholar
7. Nakato, Y., Ueda, K., Yano, H., and Tsubomura, H., J. Phys. Chem. 92, 2316 (1988).Google Scholar
8. Szklarczyk, M. and Bockris, J. O'M., J. Phys. Chem. 88, 1808 (1984)Google Scholar
9. Jacobs, J. W. M., J. Phys. Chem. 90, 6507 (1986).Google Scholar
10. van der Putten, A. T. M., de Bakker, J. W. G., and Fokkink, L. G. J., J. Electrochem. Soc. 139, 3475 (1992).Google Scholar
11. Bindra, P., Gerischer, H., and Kolb, D. M., J. Electrochem. Soc. 124, 1012 (1977).Google Scholar
12. Reineke, R. and Memming, R., Surf. Sci. 192, 66 (1987).Google Scholar
13. Allongue, P. and Souteyrand, E., J. Vac. Sci. Technol. B 5, 1644 (1987).Google Scholar
14. Oskam, G., Bart, L., Vanmaekelbergh, D., and Kelly, J. J., J. Appl. Phys. 74, 3238 (1993).Google Scholar
15. Gerischer, H., in: “Physical Chemistry: An Advanced Treatise”, Vol. 9A, Ed. Eyring, H., Academic Press, New York (1970), p. 463.Google Scholar
16. Gerischer, H., Electrochim. Acta 35, 1677 (1990).Google Scholar
17. Oskam, G., Hoffmann, P. M., and Searson, P. C., Phys. Rev. Lett. 76, 1521 (1996).Google Scholar
18. Oskam, G., Hoffmann, P. M., Schmidt, J. C., and Searson, P. C., J. Phys. Chem. 100, 1801 (1996)Google Scholar
19. Oskam, G., Vanmaekelbergh, D., and Kelly, J. J., Electrochim. Acta 38, 301 (1993).Google Scholar
20. Chazalviel, J.-N. and Stefenel, M., Surf. Sci. 134, 865 (1983).Google Scholar
21. Gorostiza, P., Servat, J., Morante, J. R., and Sanz, F., Thin Solid Films 275, 12(1996).Google Scholar
22. Oskam, G., Vanmaekelbergh, D., and Kelly, J. J., Electrochim. Acta 38, 1115 (1993).Google Scholar
23. see e.g.: “Instrumental Methods in Electrochemistry”, Southampton Electrochemistry Group, Ellis Horwood Series in Physical Chemistry (1990), Chapter 9.Google Scholar
24. Scherb, G. and Kolb, D. M., J. Electroanal. Chem. 396, 151 (1995).Google Scholar
25. Gunawardena, G., Hills, G., Montenegro, I., and Scharifker, B., J. Electroanal. Chem. 138, 225(1982).Google Scholar
26. Scharifker, B. R. and Hills, G. J., Electrochim. Acta 28, 879 (1983).Google Scholar
27. Rhoderick, E. H. and Williams, R. H., “Metal-Semiconductor Contacts”, Oxford Science Publications, Clarendon Press, Oxford (1988).Google Scholar