Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T01:45:52.791Z Has data issue: false hasContentIssue false

Electrochemical Charge Transfer to Diamond

Published online by Cambridge University Press:  01 February 2011

Vidhya Chakrapani
Affiliation:
Case Western Reserve University, Chemical Engineering, A. W. Smith building, 10900, Euclid Avenue, Cleveland, OH, 44106, United States
John C. Angus
Affiliation:
jca3@case.edu, Case Western Reserve University, Chemical Engineering, Cleveland, OH, 44106, United States
Alfred B. Anderson
Affiliation:
aba@case.edu, Case Western Reserve University, Chemistry, Cleveland, OH, 44106, United States
Gamini U. Sumanasekera
Affiliation:
gamini.sumanasekera@louisville.edu, University of Louisville, Physics, Louisville, KY, 40291, United States
Get access

Abstract

Electrochemically mediated charge transfer has been primarily studied by its effect on the surface conductivity of diamond. In this paper we show that the effect is not restricted to diamond, but may occur in other material systems as well, for example, semiconducting single-walled carbon nanotubes and gallium nitride.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Landstrass, M. I., and Ravi, K. V., Appl. Phys. Lett. 55, 975 (1988).Google Scholar
2. Gi, R. S., Tashihiro, K., Tanaka, S., Fujisawa, T., Kimura, H., Kurosu, T. and Iida, M., Jap. J. Appl. Phys. Part 1 38, 3492 (1999).Google Scholar
3. Gi, R. S., Mizumasa, T., Akiba, Y., Hirose, Y., Kurosu, T., and Iida, M., Jap. J. Appl. Phys. Part 1 34, 5550 (1995).Google Scholar
4. Gi, R. S., Ishikawa, T., Tanaka, S., Kimura, T., Akiba, Y., and Iida, M., Jap. J. Appl. Phys. Part 1 36, 2057 (1997).Google Scholar
5. Maier, M., Riedel, B., Mantel, J., Ristein, J., and Ley, L., Phys. Rev. Lett. 85, 3472 (2000).Google Scholar
6. Foord, J. S., Lau, C. H., Hiramatsu, M., Jackman, R. B., Nebel, C. E., and Bergonzo, P., Diam. and Relat. Mater. 11, 856 (2002).Google Scholar
7. Chakrapani, V., Eaton, S. C., Anderson, A. B., Tabib-Azar, M., and Angus, J. C., Electrochem. Solid-State Lett. 8, E4 (2005).Google Scholar
8. Dean, J. A., Lange's Handbook of Chemistry (15th Edition) (1999) McGraw-Hill.Google Scholar
9. Maier, F., Ristein, J., and Ley, L., Phys. Rev. B 64, 165411 (2001).Google Scholar
10. Pleskov, Yu. V., Sakharova, A. Ya., Krotova, M. D., Bouilov, L. L., and Spitsyn, B. V., J. Electroanal. Chem. 228, 19 (1987).Google Scholar
11. Rao, T. N.. Tryk, D. A., Hashimoto, K., and Fujishima, A., J. Electrochem. Soc. 146, 680 (1999).Google Scholar
12. Kazaoui, S., Minami, N., Matsuda, N., Kataura, H., and Achiba, Y., Appl. Phys. Lett. 78, 3433 (2001).Google Scholar
13. Tracy, K. M., Hartlieb, P. J., Davis, R. F., Hurt, E. H., and Nemanich, R. J., J. Appl. Phys. 94, 3939 (2003).Google Scholar
14. Chakrapani, V., Electrochemically mediated charge transfer to diamond and other wide bandgap semiconductors. Ph.D. Thesis, Case Western Reserve University, Cleveland, Ohio, USA, 2007.Google Scholar