Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T03:41:45.181Z Has data issue: false hasContentIssue false

Electrochemical Activity of Natural and Synthetic Manganese Dioxides

Published online by Cambridge University Press:  16 February 2011

J.M. Amarilla
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide, ENSEEG -INP Grenoble BP 75, F-38402 Saint-Martin-d'Héres, France Instituto de Ciencia de Materiales Madrid, 28006 Madrid, Spain
L.A.H MacLean
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide, ENSEEG -INP Grenoble BP 75, F-38402 Saint-Martin-d'Héres, France
F. Tedjar
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide, ENSEEG -INP Grenoble BP 75, F-38402 Saint-Martin-d'Héres, France RECUPYL, 46 avenue F. Viallet, F- 38031 Grenoble Cedex, France
F. Le Cras
Affiliation:
Lab. de Cristallographie CNRS, BP 166, 38042 Grenoble Cedex 9, France
P. Strobel
Affiliation:
Lab. de Cristallographie CNRS, BP 166, 38042 Grenoble Cedex 9, France
C. Poinsignon
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide, ENSEEG -INP Grenoble BP 75, F-38402 Saint-Martin-d'Héres, France
Get access

Abstract

even manganese dioxide (MD) forms including natural ramsdellite, β-MnO2 and samples with structures intermediate between these two types, have been analyzed interms of chemical and structural disorder. XRD and IR spectra show that natural ramsdellite contains groutellite, MnO1.5(OH)0.5. The OH absorption band in the 3400cm-1 region is sharp for groutellite, less intense on CMD spectrum, andsuperimposed to a broad and diffuse absorption ranging from 3600 to 2000cm-1 in most γ-MnO2's. The OH groups are associated with Mn+3 defects, while the broad and diffuse absorption band can be assigned to protons in empty MnO6 octahedra, and so related to instable manganese oxydation state between Mn3+ and Mn4+.

A potentiostatic study in IM and 7M KOH shows that the stoichiometric oxides, ramsdelliteand β-MnO2, are not reduced, while CMD and EMD are reversibly reduced by H+/-einsertion. In 7M KOH, a reversible reduction occurs for both CMDs and EMDs until -0.2 V, while a heterogeneous mechanism destroys the structure at lower potential (70% capacity loss after 3 redox cycles). Only ramsdellite and β-MnO2 can be cycled reversibly below -0.37 V, but the drained capacity is very low for β-MnO2.

The presence of Mn3+ and Mn4+ vacancies associated to structural disorderin synthetic MDs increases their reduction potential and completely modifies the chemicalproperties. This mixed valence state seems to be at the origin of the reduction properties by proton insertion in protonic electrolytes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1 Wolff, P.M. De, Acta Crystallogr., 1959, 12, 341.Google Scholar
2 Pannetier, J., Progess in batteries and battery materials, 1992, 11, 51.Google Scholar
3 Pannetier, J., Chabre, Y., Poinsignon, C., ISSI letters, 1990, 1,25.Google Scholar
4 Pannetier, J., Chabre, Y., Progr. in Solid State Chemistry, 1995 to be published.Google Scholar
5 Ripert, M., Poinsignon, C., Chabre, Y. & Pannetier, J., Phase Transitions, 1991, 2-4, 205.Google Scholar
6 Ripert, M., Poinsignon, C., Pannetier, J., Chabre, Y. Mat. Res. Soc.Proc., 1991, 210, 359.Google Scholar
7 Maskell, W.C., Shaw, J.E., Tye, F.L., J. Applied Electroch., 1982, 12, 101.Google Scholar
8 Amarilla, J.M., Tedjar, F., Poinsignon, C. Electrochem. Acta, 1994, 39, 15, 2321.Google Scholar
9 Kosawa, A., Yeager, J.F., J. Electro Chem. Soc., 1968, 115, 1003.Google Scholar
10 McBreen, J., J.Power Sources, 1975, 5, 525.Google Scholar
11 Poinsignon, C., Amarilla, J.M., Tedjar, F., Prog.in batt. battery materials, 1994, 13, 148.Google Scholar
12 Poinsignon, C., Amarilla, J.M., Tedjar, F., Solid State lonics, 1994, 70/71, 649.Google Scholar
13 Poinsignon, C., Amarilla, J.M., Tedjar, F., J. Material Chemistry, 1993, 3(12) 1227.Google Scholar
14 Tedjar, F., Amarilla, J.M., Poinsignon, C., Electrochem. Acta., submitted.Google Scholar
15 Thackeray, M.M., Rossouw, M.H., Gummow, R.J., Lilies, D.C., Pearce, K., Kock, A. de, David, W.I.F., Hull, S., Electrochem. Acta, 1993, 38, 1259.Google Scholar
16 Chabre, Y., Ripert, M., Mat. Res.Soc. Symp. Proc., 1991, 210, 367.Google Scholar
17 Bystrom, A.M., Acta Chem.Scand., 1949, 3, 163.Google Scholar
18 Voinov, M., Electrochem. Acta, 1982, 7, 833.Google Scholar
19 Bode, H., Schmier, A., Die Naturwissenschaften, 1962, 49-20, 465.Google Scholar
20 Moore, T.E., Ellis, M., Selwood, P.W., J. Am. Chem. Soc., 1950, 72, 856.Google Scholar
21 Bricker, O., Am. Miner, 1965, 50, 1296.Google Scholar
22 Potter, R.M., Rossman, G.R. Am. Min., 1979, 64 1199.Google Scholar
23 Klinsberg, C., Roy, R. Am. Min., 1959, 44 819.Google Scholar
24 Rossouw, M.H., Kock, A. de, Lilies, D.C., Gummow, R.J., Thackeray, M.M., J. Mat Chem., 1992, 2 (11), 1211.Google Scholar
25 Amarilla, J.M., Pannetier, J., Poinsignon, C. (1995) to be published Google Scholar
26 Farmer, V.C., The Infrared Spectra of Minerals (1974) The Mineralogical Society, London.Google Scholar
27 Strobel, P. et al. , to be published.Google Scholar
28 MacLean, L.A.H. et al. , to be published.Google Scholar