Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T22:06:46.911Z Has data issue: false hasContentIssue false

Electrical profiles of ultra-low energy antimony implants in silicon

Published online by Cambridge University Press:  17 March 2011

T. Alzanki
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
R. Gwilliam
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
N. Emerson
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
B. J. Sealy
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
E. Collart
Affiliation:
Applied Materials UK Ltd., Parametric and Conductive Implant Division, Foundry Lane, Horsham, W-Sussex, RH13 5PX, UK
Get access

Abstract

A novel Differential Hall Effect technique is used to obtain doping profiles of 2keV implants of antimony in <100> silicon at a depth resolution of 2nm. The electrical profiles are compared with atomic profiles determined from Secondary Ion Mass Spectroscopy (SIMS) measurements. We demonstrate good consistency between the two profiling techniques and confirm that the SIMS profiles can be used to identify the junction depth. The profiles show that antimony does not diffuse significantly for annealing temperatures below 800°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ono, M., Saito, M., Yosliitomi, T., Fiegna, C., Ohguro, T. and Iwai, H., Intl. Symp.on Elec. Dev. Meet. Tech. Digest, 119 (1993).Google Scholar
2. Hori, A., Nakaoka, H., Umimoto, H., Yamashita, K., Takase, M., Shimizu, N., Mizuno, B. and Odanaka, S., Intl. Symp.on Elec. Dev. Meet. Tech. Digest, 485 (1994).Google Scholar
3. Saito, M., Yoshitomi, T., Ono, M., Akasaka, Y., Nii, H., Matsuda, S., Momose, H. S., Katsumata, Y., Ushiku, Y. and Iwai, H., Intl. Symp.on Elec. Dev. Meet. Tech. Digest, 897 (1992).Google Scholar
4. Shishiguchi, S., VLSI Tech. Symp. 134 (1998).Google Scholar
5. Thompson, S., VLSI Tech. Symp. 132 (1998).Google Scholar
6. Shibahara, K. and Onimatsu, D., Mat. Res. Soc. Symp. 610, B8.5.1 (2000).Google Scholar
7. Nylandsted-Larsen, A., Pedersen, F. T. and Weyer, G., J. Appl. Phys., 59, (6) 1908 (1986).Google Scholar
8. Collart, E., Kirkwood, D., Vandervorst, W., Brijs, B., Berg, J. A. Van den, Werner, M. and Noakes, T.C. Q., Proc. of IEEE for the Intl. Conf. on Ion Implant. Tech., 147 (2002).Google Scholar
9. Shibahara, K., IEICE Trans. Elec. E85–C, 1091 (2002).Google Scholar
10. Alzanki, T., Gwilliam, R., Emerson, N., Tabatabaian, Z., Jeynes, C. and Sealy, B. J., Semi. Sci. and Tech. (2004) (in press).Google Scholar
11. Alzanki, T., Gwilliam, R., Emerson, N. and Sealy, B. J., J. Elec. Mat. (2004) (in press).Google Scholar