Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T13:30:05.981Z Has data issue: false hasContentIssue false

The Electrical Conduction at Early Stages of Cluster-Assembled Films Growth

Published online by Cambridge University Press:  08 March 2011

Emanuele Barborini*
Affiliation:
Tethis SpA, via Russoli 3, 20143 Milano, Italy
Gabriele Corbelli
Affiliation:
CIMAINA and Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano, Italy
Paolo Milani
Affiliation:
CIMAINA and Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano, Italy
Get access

Abstract

Electrical conduction in Fe, Pd, Nb, W and Mo cluster-assembled films was investigated in-situ, during their growth by supersonic cluster beam deposition. We observed for clusterassembled films resistivity values several orders of magnitude larger than corresponding bulk, as well as an increase of resistivity by increasing the film thickness, in contrast to the behaviour of atom-assembled metallic films. This suggests that nanoscale morphology arising by growth dynamics of cluster-assembled films, such as the minimal cluster-cluster interconnection and the evolution of surface roughness with thickness, may play a crucial role in the observed behaviour. Theoretical models based on non-isotropic 3D distributions of clusters into the film would help for a deeper understanding of the behaviour of cluster-assembled films compared to atomassembled ones. Benefits are expected in the technological field of devices performing electrical read-out on active nanostructured layers, as in the case of chemoresistive sensors.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Perez, A., Melinon, P., Dupuis, V., Jensen, P., Prevel, B., Tuaillon, J., Bardotti, L., Martet, C., Treilleux, M., Broyer, M., Pellarin, M., Vaille, J.L., Palpant, B., and Lerme, J., J. Phys. D: Appl. Phys. 30, 709 (1997).Google Scholar
2. Wegner, K., Piseri, P., Vahedi Tafreshi, H., and Milani, P., J. Phys. D: Appl. Phys. 39, R439 (2006).Google Scholar
3. Milani, P. and Iannotta, S., Cluster Beam Synthesis of Nanostructured Materials, Springer Berlin (1999).Google Scholar
4. Hihara, T., Yamada, Y., Katoh, M., Peng, D.L., and Sumiyama, K., J. Appl. Phys. 94, 7594 (2003).Google Scholar
5. Yamamuro, S., Sumiyama, K., Hihara, T., and Suzuki, K., J. Phys.: Condens Matter 11, 3247 (1999).Google Scholar
6. Jensen, P., Melinon, P., Hoareau, A., Xiong Hu, J., Cabaud, B., Treilleux, M., Bernstein, E., and Guillot, D., Physica A 185, 104 (1992).Google Scholar
7. Schmelzer, J., Brown, S.A., Wurl, A., Hyslop, M., and Blaikie, R., Phys. Rev. Lett. 88, 226802 (2002).Google Scholar
8. Graf, M., Gurlo, A., Barsan, N., Weimar, U., and Hierlemann, A., J. Nanoparticles Res. 8, 823 (2006).Google Scholar
9. Barborini, E., Vinati, S., Leccardi, M., Repetto, P., Bertolini, G., Rorato, O., Lorenzelli, L., Decarli, M., Guarnieri, V., Ducati, C., and Milani, P., J. Micromech. Microeng. 18, 055015 (2008).Google Scholar
10. Favier, F., Walter, E.C., Zach, M.P., Benter, T., and Penner, R.M., Science 293, 2227 (2001).Google Scholar
11. Dankert, O. and Pundt, A., Appl. Phys. Lett. 81, 1618 (2002).Google Scholar
12. Xu, T., Zach, M.P., Xiao, Z.L., Rosenmann, D., Welp, U., Kwok, W.K., and Crabtree, G.W., Appl. Phys. Lett. 86, 203104 (2005).Google Scholar
13. Steinhögl, W., Schindler, G., Steinlesberger, G., Traving, M., and Engelhardt, M., J. Appl. Phys. 97, 023706 (2005).Google Scholar
14. Lim, J.W. and Isshiki, M., J. Appl. Phys. 99, 094909 (2006).Google Scholar
15. Durkan, C. and Welland, M.E., Phys. Rev. B 61, 14215 (2000).Google Scholar
16. Steinlesberger, G., Engelhardt, M., Schindler, G., Steinhogl, W., von Glasow, A., Mosig, K., and Bertagnolli, E., Microlectron. Eng. 64, 409 (2002).Google Scholar
17. Barborini, E., Piseri, P., and Milani, P., J. Phys. D: Appl. Phys. 32, L105 (1999).Google Scholar
18. Milani, P., Piseri, P., Barborini, E., Podestà, A., and Lenardi, C., J. Vac. Sci. Technol. A 19, 2025 (2001).Google Scholar
19. Stauffer, D. and Aharony, A., Thin Solid Films 47, 3 (1992).Google Scholar
20. Maheswar, N., Lodha, G.S., and Nandedkar, R.V., J. Appl. Phys. 100, 113709 (2006) and references therein. Google Scholar
21. Barabasi, A.L. and Stanley, H.E., Fractal Concepts in Surface Growth Cambridge University Press, Cambridge, England (1995).Google Scholar
22. Podestà, A., Bongiorno, G., Scopelliti, P., Bovio, S., Milani, P., Semprebon, C., and Mistura, G., J. Phys. Chem. C 113, 18264 (2009).Google Scholar