Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T13:20:54.142Z Has data issue: false hasContentIssue false

Electrical and Optical Studies of Si-Implanted GaN

Published online by Cambridge University Press:  21 March 2011

James A. Fellows
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, U.S.A
Yung Kee Yeo
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, U.S.A
Robert L. Hengehold
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, U.S.A
Leonid Krasnobaev
Affiliation:
Implant Sciences Corp, Wakefield, MA 01880-1246, U.S.A
Get access

Abstract

The electrical and optical properties of Si-implanted GaN have been investigated as a function of ion dose, anneal temperature, and implantation temperature using Hall-effect measurements and photoluminescence. Implantation of 200 keV Si ions was made at room temperature and 800°C into MBE-grown GaN capped with 500 Å AlN at six different doses ranging from 1x1013 to 5x1015 cm-2. The samples were proximity cap annealed from 1050 to 1350°C for 5 min to 20 s using either a conventional furnace or rapid thermal annealing. For a given dose, electrical activation efficiencies and mobilities increase as the anneal temperature increases from 1050 to 1350°C. Generally, the higher the dose, the greater the activation efficiency for any given anneal temperature. For a sample implanted with a dose of 1x1015 cm-2 and annealed at 1350°C for 20 s, an electrical activation efficiency of 100% was obtained. Exceptional carrier concentrations and mobilities were obtained on all Si-implanted samples, and a comparison of the results was made between room temperature and 800°C implantation. Photoluminescence measurements were also performed in an effort to better understand the electrical activation behavior of the Si implants in GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Edwards, A., Rao, M. V., Molnar, B., Wickenden, A. E., Holland, O. W., and Chi, P. H., J. Electron. Mater. 26, 334 (1997).Google Scholar
2. Zolper, J. C., Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., Crawford, M. H., and Karlicek, R. F. Jr, Appl. Phys. Lett. 70, 2729 (1997).Google Scholar
3. Dupius, R. D., Eiting, C. J., Grudowski, P. A., Hsia, H., Tang, Z., Becher, D., Kuo, H., Stillman, G. E., and Feng, M., J. Electron. Mater. 28, 319 (1999).Google Scholar
4. Cao, X. A., Abernathy, C. R., Singh, R. K., Pearton, S. J., Fu, M., Sarvepalli, V., and Sekhar, J. A., Zolper, J. C., Rieger, D. J., Han, J., Drummond, T. J., Shul, R. J., and Wilson, R. G., Appl. Phys. Lett. 73, 229 (1998).Google Scholar
5. Zolper, J. C., Han, J., Deusen, S. B. Van, Crawford, M. H., Biefeld, R. M., Jun, J., Suski, T., Baranowski, J. M., and Pearton, S. J., Mat. Res. Soc. Symp. Proc. 482, 979 (1998).Google Scholar
6. Liu, C., Wenzel, A., Volz, K., and Rauschenback, B., Nuc Instr & Meth in Phys Res B, 148, 396 (1999).Google Scholar
7. Parikh, N., Suvkhanov, A., Lioubtchenko, M., Carlson, E., Bremser, M., Bray, D., Davis, R., and Hunn, J., Nuc Instr & Meth in Phys Res B, 127/128, 463 (1997).Google Scholar