Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T08:07:08.232Z Has data issue: false hasContentIssue false

Electrical and Optical Interconnection-Technology based on Ormocer® - Inorganic-Organic Hybrid Materials

Published online by Cambridge University Press:  01 February 2011

Michael Popall*
Affiliation:
Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, D-97082 Würzburg, GERMANY
Ralf Buestrich
Affiliation:
Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, D-97082 Würzburg, GERMANY
Frank Kahlenberg
Affiliation:
Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, D-97082 Würzburg, GERMANY
Annika Andersson
Affiliation:
ACREO AB, Bredgatan 34, SE-602 21 Norrköping, SWEDEN
Joacim Haglund
Affiliation:
ACREO AB, Bredgatan 34, SE-602 21 Norrköping, SWEDEN
Mats E. Robertsson
Affiliation:
ACREO AB, Bredgatan 34, SE-602 21 Norrköping, SWEDEN Ericsson Components AB, S-164 81 Kista-Stockholm, SWEDEN
Gerd Blau
Affiliation:
CSEM, PO: Box, CH-8048 Zürich, SWITZERLAND
Mike Gale
Affiliation:
CSEM, PO: Box, CH-8048 Zürich, SWITZERLAND
Oliver Rösch
Affiliation:
Robert Bosch GmbH, FV/FLD, P.O. Box, D-70049 Stuttgart, GERMANY
Alexander Dabek
Affiliation:
Technische Universität Berlin, Gustav-Meier-Allee 25, D-13355 Berlin, GERMANY
Jens Neumann-Rodekirch
Affiliation:
W.C. Heraeus, Thickfilm, Heraeusstr. 12–14, D-63450 Hanau, GERMANY
Lubomir Cergel
Affiliation:
Motorola SPS, 207 Route de Ferney, P.O. Box 15, 1218 Geneva, SWITZERLAND
Daniel Lambert
Affiliation:
BULL, VLSI Packaging, Rue Jean-Jaures - BP 68, F-78340 Les Clayes-sous-Bois, FRANCE
*
* Author to whom correspondence should be addressed.
Get access

Abstract

Photopatternable hybrid inorganic-organic polymers with negative resist behaviour have been developed and tested for evaluation in optical and electrical interconnection technology. They are composed of inorganic oxidic structures cross-linked or substituted by organic groups. The synthesis starts from organosilane precursors reacted by sol-gel-processing in combination with organic crosslinking of polymerisable organic functions. As a result of these functionalities the properties of the ORMOCER®s are adjusted to the particular applications. Systematic variation of composition combined with adaptation to micro system technology allows great flexibility in processing. The main features of these materials are:

• Combined use as dielectric and passivation layers in electrical systems and devices as well as core and cladding for optical applications enables e/o applications with high integration levels.

• Postbaking at moderate temperatures (120 - 170 °C) enables processing on low-cost substrates such as FR-4 (a glass-fibre reinforced epoxy-polymer).

• Easily adaptable to thin film technology: spin-on with planarisation > 90 %, via diameters down to 20 μm and high aspect ratio for optical waveguides have been achieved.

Synthesis, modification of the resins towards technological needs, their thin film technology and the resulting demonstrators will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

®

Registered trademark of Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. in Germany

References

REFERENCES

1. Olbrich, Walter, “High density printed circuit board technologies”, Future Circuits International, 2, 133138 (1997).Google Scholar
2. Dabek, A., Popall, M., Olsowski, B., Kallmayer, Ch. and Reichl, H. “Evaluation of ORMOCERs for Microelectronics Applications”, Proc. of the 1997 European Microelectronics Conference, Venice, Italy, 125132 (1997).Google Scholar
3. Popall, M., Dabek, A., Robertsson, M. E., Gustafsson, G., Hagel, O.-J., Olsowski, B., Buestrich, R., Cergel, L., Lebby, M., Kiely, P., Joly, J., Lambert, D., Schaub, M. and Reichl, H., “ORMOCER®s - New Photo-Patternable Dielectric and Optical Materials for MCM-Packaging”, Proc. 48th Electronic Components and Technology Conference, Seattle, WA, 10181025 (1998).Google Scholar
4. Robertsson, M. E., Hagel, O-J., Gustafsson, G., Dabek, A., Popall, M., Cergel, L., Wennekers, P., Kiely, P., Lebby, M. and Lindahl, T., “O/e-MCM Packaging with New Patternable Dielectric and Optical Materials”, Proc. 48th Electronic Components and Technology Conference, Seattle, WA, 14131421 (1998).Google Scholar
5. Popall, M., Dabek, A., Robertsson, M.E., Valizadeh, S., Hagel, OJ., Buestrich, R., Nagel, R., Cergel, L., Lambert, D., Schaub, M., “ORMOCER®s - Inorganic-organic hybrid materials for e/o interconnection-Technology”, Proc. of Fifth International Conference on Frontiers of Polymers and Advanced Materials, June 99, Poznan, Poland to be published in Molecular Crystals & Liquid crystals. Google Scholar
6. Kahlenberg, F., Buestrich, R. and Popall, M., “Controlled synthesis of perfluoroaryl functionalized hybrid materials for optical applications based on NMR”, Mat. Res. Soc, Symp. Proc. (San Francisco, 2000) (in print).Google Scholar
7. Schubert, U., Hüsing, N., A., and Lorenz, , Chem. Mater., 7, 2010 (1995).Google Scholar
8. Popall, M., Kappel, J., Pilz, M. and Schulz, J.New Patternable Materials for Electronic Packaging”, Mat. Res. Soc, Symp. Proc. 264, 353359 (1992).Google Scholar
9. Popall, M., Buestrich, R., Fröhlich, L. and Olsowski, B., to be published.Google Scholar
10. Rösch, O. S., Bernhard, W., Müller-Fiedler, R., Buestrich, R., Roscher, C., Popall, M., Dannberg, P., Pompe, G., and Neyer, A., “Organic/inorganic hybrid polymer system for integrated digital optical switches”, Proc. Plastic Optical Fibres Conference (POF), 332338 (Berlin, 1998).Google Scholar
11. Rösch, O.S.. Bernhard, W., Müller-Fiedler, R., Dannberg, P., Bräuer, A., Buestrich, R., Popall, M., “High performance low cost fabrication method for integrated polymer optical devices”, Proceedings of 44th SPIE-meeting,, 3799, 214224 (1999).Google Scholar
12. Buestrich, R., Kahlenberg, F., Popall, M., Dannberg, P., Müller-Fiedler, R., Rösch, O., “ORMOCER®s for interconnection technology”, Proceedings of EUROMAT'99,, 13 (1999)Google Scholar
13. Buestrich, R., Kahlenberg, F., Martin, A., Popall, M., Rösch, O. S., “Low Si-OH ORMOCER®s for dielectric and optical interconnection technology”, Mat. Res. Soc, Symp. Proc (San Francisco, 2000) (in print).Google Scholar
14. Andersson, A., “ORMOCER®s - kinetics of thermal- and photo-curing and resulting properties”, MSc-work, Royal Inst of Technology, Stockholm (Sept. 1997).Google Scholar
15. Thompson, L.F., Willson, CG. and Bowden, M.J., “Introduction to Microlithography”, ACS Symposium Series 219, chapters 3 and 4 (1985).Google Scholar
16. Lindahl, T., “Microvia Technique for PCB Manufacturing - a Technique Meeting the Requirement of High Interconnect Density”, The first International Conference on Polymers in Electronic Packaging (PEP′97), Norrköping, Sweden, 5255 (1997).Google Scholar
17. Schwartz, D. B., Chun, C. K. Y., Foley, B. M., Hartman, D. H., Lebby, M., Lee, H. C., Chan Long Shieh Kuo, S. M., Shook, S. G. and Webb, B., “A low-cost high-performance optical interconnect”. IEEE Transactions on Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, 19, 532539 (1996).Google Scholar
18. Gale, M. T., Blau, G., Pedersen, J. and Rossi, M., “UV-embossed DOEs in hybrid optical microsystems,” Proc EOS Topical Meeting on “Diffractive Optics”, Jena, Germany, 23–25 August, 1999, ISSN 1167–5357 (1999).Google Scholar