Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T03:25:18.169Z Has data issue: false hasContentIssue false

Effects of Potassium Chemisorption on the Electronic Structure of VxOy/TiO2 Surfaces

Published online by Cambridge University Press:  10 February 2011

Fulvio Parmigiani
Affiliation:
Istituto Nazionale di Fisica per la Materia and Politecnico di Milano, Dipartimento di Fisica, Piazza leonardo da Vinci, 32 – 20133 Milano, ITALY
Laura E. Depero
Affiliation:
Istituto Nazionale di Fisica per la Materia and Università di Brescia, Dipartimento di Chimica e Fisica per i Materiali, Via Branze, 38 – 25123 Brescia, ITALY
Luigi Sangaletti
Affiliation:
Istituto Nazionale di Fisica per la Materia and Università di Brescia, Dipartimento di Chimica e Fisica per i Materiali, Via Branze, 38 – 25123 Brescia, ITALY
Get access

Abstract

X-ray photoelectron spectroscopy of pure and K chemisorbed VxOy/TiO2 powders are reported. Core-line and valence band spectra suggest the presence of vanadium open shell ions on the pure VxOy/TiO2 interface, whereas potassium vanadate seems to form after K chemisorption. That results in the presence of a significant amount of gap states, with vanadium character, just above the O2p band edge, for the pure VxOy/TiO2 powder, while K chemisorption, reducing significantly the open shell vanadium ions, quenches the gap emission in the XPS valence band spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bond, G.C., Flamerz, S., Shukri, R., Faraday Discuss. Chem. Soc. 87, p. 65 (1989)Google Scholar
2. Saleh, R.Y., Wachs, I.E., Chan, S.S., Chersich, C.C., J. Catal. 98, p.102 (1986)Google Scholar
3. Vejux, A., Courtine, P., J. Solid State Chem. 23, p.93 (1978)Google Scholar
4. Hausinger, H., Schemlz, H., Knözinger, H., Appl. Catal. 40, p. 369 (1988)Google Scholar
5. Centi, G., Giamello, E., Pinelli, D., Trifirò, F., J. Catal. 130, p. 220 (1991)Google Scholar
6. Deo, G., Turek, A.M., Wachs, I.E., Machej, T., Haber, J., Das, N., Heckert, H., Hirt, A.M., Appl. Catal. A 91, p.27 (1992)Google Scholar
7. Wachs, I.E., Jehng, J.M., Hardcastle, F.D., Solid State Ionics 32/33, p.904 (1989)Google Scholar
8. Inomata, M., Miyamoto, A., Murakami, Y., J. Catal. 62, p. 140 (1980)Google Scholar
9. Bond, G.C., Flamerz, S., Appl. Catal. 71, p. 1 (1991)Google Scholar
10. Bosch, H., Janssen, F., Catalysis Today 2, p. 240(1988)Google Scholar
11. Chiarello, G., Robba, D., De Michele, G., Parmigiani, F.,, Appl. Surf. Sci. 64, p. 91 (1993)Google Scholar
12. Went, G.T., Leu, L.J., Rosin, R.R., Bell, A.T., J. Catal. 134, p.492 (1992)Google Scholar
13. Munnix, S., Schmeits, M., Phys. Rev. B 30, p. 2202 (1984)Google Scholar
14. Munnix, S., Schmeits, M., Phys. Rev. B 31, p. 3369 (1985)Google Scholar
15. Wang, C.R., Xu, Y.S., Surf. Sci. 219, p. L538 (1989)Google Scholar
16. Tait, R.H., Kasowski, R.V., Phys. Rev. B 20 p. 5178 (1979)Google Scholar
17. Henrich, V.E., Kurtz, R.L., Phys. Rev. B 23, p. 6280(1981)Google Scholar
18. Göpel, W., Anderson, J.A., Frankel, D., Jaehnig, M., Phillips, K., Schafer, J.A., Rocker, G., Surf. Sci. 140, p. 333 (1984)Google Scholar
19. Henrich, V.E., Rep. Prog. Phys. 48, p.1481 (1985)Google Scholar
20. Poumellet, B., Durham, P.J., Guo, G.Y., J. Phys: Condensed Matter 3, p. 8195(1991)Google Scholar
21. Zhang, Z., Jeng, S.P., Henrich, V.E., Phys. Rev. B 43, p. 12004(1991)Google Scholar
22. Rohrer, G.S., Henrich, V.E., Bonnel, D.A., Surf. Sci. 278, p. 146(1992)Google Scholar
23. Onishi, H., Aruga, T., Egawa, C., Lawasawa, Y., Surf. Sci. 199, p. 54 (1988)Google Scholar
24. Lad, R.J., Dake, L.S., Proc. Mater. Res. Soc. 238, p. 823 (1992)Google Scholar
25. Hardman, P.J., Casanova, R., Prabhakaran, K., Muryn, C.A., Wincott, P.L., Thornton, G., Surf. Sci. 269/270, p. 677 (1992)Google Scholar
26. Sadeghi, H.R., Henrich, V.E., J. Catal. 109, p. 1 (1988)Google Scholar
27. Evans, J., Hayden, B., Mosselmans, F., Murray, A., Surf. Sci. 279, p. L159 (1992)Google Scholar
28. Kao, C.C., Tsai, S.C., Bahl, M.K., Chung, Y.W., Lo, W.J., Surf. Sci. 95, p. 1 (1980)Google Scholar
29. Bourgeois, S., Diakite', D., Jomard, F., Perdereau, M., Poirault, R., Surf. Sci. 217, p.78 (1989)Google Scholar
30. Onishi, H., Aruga, T., Egawa, C., Lawasawa, Y., Surf. Sci. 233, p. 261 (1990)Google Scholar
31. Wu, M.C., Moller, P.J., Surf. Sci. 279, p. 23 (1992)Google Scholar
32. Wu, M.C., Møller, P.J., Surf. Sci. 224, p. 250 (1989)Google Scholar
33. Wu, M.C., Møller, P.J., Surf. Sci. 224, p. 265 (1989)Google Scholar
34. Lange, F., Schmeltz, H., Knözinger, H., J. E.I. Spec. Rel. Phen. 57, p. 307 (1991)Google Scholar
35. Deng, J., Wang, D., Wei, X., Zhai, R., Wang, H., Surf. Sci. 249, p.213(1991)Google Scholar
36. Rocker, G., Göpel, W., Surf. Sci. 181, p. 530 (1987)Google Scholar
37. Huizinga, T., Van't Blik, H. F. J., Vis, J. C., Prins, R., Surf. Sci. 135, p. 58 (1983)Google Scholar
38. Zhang, Z., Henrich, V.E., Surf. Sci. 277, p. 263 (1992)Google Scholar
39. Mattheiss, L. F., Phys. Rev. B 20, p. 1536 (1979)Google Scholar