No CrossRef data available.
Published online by Cambridge University Press: 22 May 2012
Poly(lactic-co-glycolic acid) (PLGA) films with flat surfaces and with 27nm, 190nm, 300nm, 400nm, and 520nm surface features were synthesized using a template method with polydimethylsiloxane (PDMS) molds. The nano patterns were transferred from the self-assembled polystyrene beads to the PLGA films through PDMS molds. After synthesis, the nano patterns were confirmed by AFM height scans. In order to investigate the influence of the materials on bone cells, healthy human osteoblasts were cultured on the PLGA films. The 27nm PLGA surface showed the maximum osteoblast adhesion density and a significant increase compared with the other surface features. For these reasons, and since previous studies have highlighted that similar nanometer surface features on PLGA decreased functions of other cancer cells, this study suggests that PLGA with 27nm surface features should be further studied for bone cancer applications where healthy bone cell functions need to be promoted and cancerous bone cell functions inhibited.