Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T11:55:48.430Z Has data issue: false hasContentIssue false

Effects of Piezoelectric Fields in GaInN/GaN and GaN/AlGaN Heterostructures and Quantum Wells

Published online by Cambridge University Press:  10 February 2011

Jin Seo Im
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germanya.hangleiter@physik.uni-stuttgart.de
H. Kollmer
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germanya.hangleiter@physik.uni-stuttgart.de
J. Off
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germanya.hangleiter@physik.uni-stuttgart.de
A. Sohmer
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germanya.hangleiter@physik.uni-stuttgart.de
F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germanya.hangleiter@physik.uni-stuttgart.de
A. Hangleiter
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germanya.hangleiter@physik.uni-stuttgart.de
Get access

Abstract

The effects of piezoelectric fields on the static and dynamic optical properties of GaInN/GaN and GaN/AIGaN double heterostructures and single quantum wells are studied by time-resolved photoluminescence. We find a strong increase of the luminescence decay time of the dominating transition with well thickness by several orders of magnitude. For well thicknesses larger than about 5 nm, two emission lines with strongly differing decay times are observed, which are attributed to spatially direct and indirect transitions. Our experimental findings are consistently explained by a quantitative model based on the piezoelectric fields in strained wurtzite quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).10.1063/1.111832Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S.-I., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys. 36, L1059 (1997).Google Scholar
3. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).10.1063/1.116981Google Scholar
4. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
5. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997).Google Scholar
6. Takeuchi, T., Sota, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., and Yamada, N., in Proceedings of the Second International Conference on Nitride Semiconductors (1997), p. 418.Google Scholar
7. Im, J. S., Moritz, A., Steuber, F., Hhrle, V., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 70, 631 (1997).10.1063/1.118293Google Scholar
8. Martin, G., Botchkarev, A., Rockett, A., and Morkog, H., Appl. Phys. Lett. 68, 2541 (1996).Google Scholar
9. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar
10. Nakamura, S., IEEE J. Sel. Topics Quantum Electron. 3, 435 (1997).Google Scholar