Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-08T13:21:11.799Z Has data issue: false hasContentIssue false

Effects of Interface Structure on the Electrical Characteristics of PtSi-Si Schottky Barrier Contacts

Published online by Cambridge University Press:  15 February 2011

B.-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173 (U.S.A.)
D. J. Silversmith
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173 (U.S.A.)
R. W. Mountain
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173 (U.S.A.)
C. H. Anderson Jr.
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173 (U.S.A.)
Get access

Abstract

The properties of PtSi-Si Schottky barrier contacts formed by a new technique employing multilayer metallization are compared with those of contacts prepared by the conventional single-layer metallization method. The multilayer technique permits the formation of very shallow contacts without any limitation being placed on the thickness of the PtSi layer. For a PtSi layer of given thickness the PtSi-Si contact interface obtained by this technique is more uniform than the interface formed by annealing a single layer of platinum on silicon. The interfacial uniformity is independent of PtSi thickness for shallow PtSi-Si contacts produced by the multilayer technique, while for conventional contacts the uniformity decreases with increasing PtSi thickness. Large-area (9.4 × 10−3 cm2) diodes utilizing shallow PtSi-Si contacts about 200 Å deep have been fabricated without guard rings. These diodes exhibit near-ideal forward current-voltage characteristics, low reverse leakage currents (less than 5 nA at −10 V) and high breakdown voltages (over −90 V). These characteristics are superior to those of diodes using conventional PtSi-Si contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tu, K. N. and Mayer, J. W., Silicide formation. In Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films Interdiffusion and Reactions, Wiley, New York, 1978, pp. 359405.Google Scholar
2 Muta, H., Suzuki, S., Yamada, K., Nagahashi, Y., Tamaka, T., Okabayashi, H. and Kamamura, N., IEEE Trans. Electron Devices, 23 (1976) 1023.CrossRefGoogle Scholar
3 Okada, K., Aomura, K., Suzuki, M. and Shiba, H., IEEE J. Solid-State Circuits, 13 (1978) 693.Google Scholar
4 Tu, K. N., Hammer, W. N. and Olowolafe, J. O., J. Appl. Phys., 51 (1980) 1663.Google Scholar
5 van Gurp, G. J., Daams, J. L. C., von Oostrom, A., Augustus, L. J. M. and Tamminga, Y., J. Appl. Phys., 50 (1980) 6915.Google Scholar
6 Tsaur, B.-Y., Silversmith, D. J., Mountain, R. W., Hung, L. S., Lau, S. S. and Sheng, T. T., J. Appl. Phys., 52 (1981) 5243.Google Scholar
7 Lepselter, M. P. and Sze, S. M., Bell Syst. Tech. J., 47 (1967) 196.Google Scholar
8 Sze, S. M., Physics of Semiconductor Devices, Wiley-Interscience, New York, 1969, Chap. 8.Google Scholar
9 Sze, S. M. and Gibbons, G., Solid-State Electron., 9 (1966) 831.Google Scholar
10 Yanagisawa, S. and Fukuyama, T., J. Electrochem. Soc., 127 (1980) 1150.Google Scholar