Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T04:28:30.962Z Has data issue: false hasContentIssue false

Effects of growth interruption on the structural and optical properties of GaN self-assembled quantum dots

Published online by Cambridge University Press:  01 February 2011

K. Hoshino
Affiliation:
Research Center for Advanced Science and Technology, and Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan
S. Kako
Affiliation:
Research Center for Advanced Science and Technology, and Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan
Y. Arakawa
Affiliation:
Research Center for Advanced Science and Technology, and Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan
Get access

Abstract

We report the effects of thermal annealing and growth interruption on the formation of GaN self-assembled quantum dots (QDs) grown by low-pressure metalorganic chemical vapor deposition (MOCVD). For the uncapped QD structures, atomic force microscopy (AFM) analysis shows that the density of the QDs rapidly increases and then decreases with increasing the annealing time. This is due to the combined effect of the QD formation process and the ripening process. The size of the QDs increases with increasing the annealing time. We have also investigated the photoluminescence (PL) property of the AlN capped QD structures with different growth interruption times. The PL from the QDs showed a red-shift with increasing the growth interruption time. In contrast, the PL from the wetting layer (WL) shows a blue-shift. These results indicate that the formation of the QDs is proceeding at the expense of the WL, which is consistent with the AFM analysis of the thermal annealing effect. These results show that the growth interruption plays an important role in the formation of the QDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RERERENCES

1. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).Google Scholar
2. Asada, M., Miyamoto, Y., and Suematsu, Y., IEEE J. Quantum Electron. 22, 1915 (1986).Google Scholar
3. Yariv, A., Appl. Phys. Lett. 53, 1033 (1988).Google Scholar
4. Arakawa, Y., Nishioka, M., Nakayama, H., and Kitamura, K., IEICE, E–79–C–11, 1487 (1996).Google Scholar
5. Arakawa, Y., Someya, T., and Tachibana, K., phys. stat. sol. (b) 244, 1 (2001).Google Scholar
6. Rouvière, J. L., Simon, J., Pelekanos, N., Daudin, B., and Feuillet, G., Appl. Phys. Lett. 75, 2632 (1999).Google Scholar
7. Arakawa, Y., Someya, T., and Tachibana, K., IEICE Trans Elctron. E83–C, 564 (2000).Google Scholar
8. Daudin, B., Widmann, F., Feuillet, G., Samson, Y., Arlery, M., and Rouvière, J. L., Phys. Rev. B 56, R7069 (1997).Google Scholar
9. Miyamura, M., Tachibana, K., and Arakawa, Y., Appl. Phys. Lett. 80, 3937 (2002).Google Scholar
10. Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett. 69, 4096 (1996).Google Scholar
11. Tanaka, S., Hirayama, H., Aoyagi, Y., Narukawa, Y., Kawakami, Y., Fujita, Sz., and Fujita, Sg., Appl. Phys. Lett. 71, 1299 (1997).Google Scholar
12. Tachibana, K., Someya, T., Ishida, S., and Arakawa, Y., phys. stat. sol. (b) 228, 187 (2001).Google Scholar
13. Widmann, F., Daudin, B., Feuillet, G., Samson, Y., Rouvière, J. L., and Pelekanos, N., J. Appl. Phys. 83, 7618 (1998).Google Scholar
14. Kim, Y., Min, B. D., and Kim, E. K., J. Appl. Phys, 85, 2140 (1999).Google Scholar