Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T02:38:24.372Z Has data issue: false hasContentIssue false

Effects of Crystalline Microstructure on Epitaxial Morphology

Published online by Cambridge University Press:  21 February 2011

Fereydoon Family
Affiliation:
Department of Physics, Emory University, Atlanta GA 30322
Jacques G. Amar
Affiliation:
Department of Physics, Emory University, Atlanta GA 30322
Get access

Abstract

In the past simulations of epitaxial growth have used solid-on-solid (SOS) models to simulate the crystalline structure of both the substrate and the growing crystal. These models have produced results in the early stages of growth in good agreement with experiments for a number of different quantities, including the island density and the island size distribution. For multilayer growth, however, there exists a competition between microscopic effects such as the Ehrlich-Schwoebel step barrier and the crystalline microstructure. Therefore, the crystal structure and geometry are important in determining the dynamics and evolution of epitaxial structure and morphology. We present the results of large-scale realistic kinetic Monte-Carlo simulations of multilayer epitaxial growth on fcc(100) and bcc(100) surfaces. The influence of crystal structure on the formation and coarsening of mounds and facets is discussed. We also discuss and compare our results with recent experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See for example, Tsao, J.Y., Materials fundamentals of molecular beam epitaxy (World-Scientific, Singaport, 1993).Google Scholar
2 Weeks, J.D. and Gilmer, G.H., Adv. Chem. Phys. 40, 157 (1979).Google Scholar
3 Wolf, D.E. and Villain, J., Europh. Lett. 13, 389 (1990).Google Scholar
4 Das Sarma, S. and Tamborenea, P., Phys. Rev. Lett. 66, 325 (1991).Google Scholar
5 Villain, J., J. Phys. I (France) 1, 19 (1991).Google Scholar
6 Smilauer, P. and Vvedensky, D. D., Phys. Rev. B 48, 17603 (1993).Google Scholar
7 Krug, J., Plischke, M., and Siegert, M. Phys. Rev. Lett. 70, 3271 (1993).Google Scholar
8 Siegert, M. and Plischke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
9 Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., and Orr, B.G., Phys. Rev. Lett. 72 116 (1994).Google Scholar
10 Smith, G.W., Pidduck, A.J., Whitehouse, C.R., Glasper, J.L., and Spowart, J., J. Cryst.Growth, 127, 966 (1993).Google Scholar
11 Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994).Google Scholar
12 Amar, J.G., Lam, P.-M., and Family, F., Phys. Rev. E 47, 3242 (1993).Google Scholar
13 Evans, J.W., Sanders, D.E., Thiel, P. A., and DePristo, A.E., Phys. Rev. B 41, 5410 (1990); H.C. Kang and J.W. Evans, Surface Science 271, 321 (1992).Google Scholar
14 Amar, J.G. and Family, F., to be published.Google Scholar
15 He, Y.L., Yang, H.N., Lu, T.M., and Wang, G.C., Phys. Rev. Lett. 69, 3770 (1992).Google Scholar
16 Stroscio, J.A., Pierce, D.T., Stiles, M., Zangwill, A., and Sander, L.M., Phys. Rev. Lett. 75, 4246 (1995)Google Scholar
17 Ehrlich, G. and Hudda, F., J. Chem. Phys. 44, 1039 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969)Google Scholar
18 Family, F. and Vicsek, T., Dynamics of Fractal Surfaces, (World Scientific, Singapore 1992).Google Scholar
19 Bartelt, M.C. and Evans, J.W., Phys. Rev. Lett. 75, 4250 (1995).Google Scholar
20 Edwards, S.F. and Wilkinson, D.R., Proc. R. Soc. Lond. A381, 17 (1982).Google Scholar
21 Kunkel, R., Poelsema, B., Verheij, L.K. and Comsa, G., Phys.Google Scholar
22 Egelhoff, W.F. Jr. and Jacob, I., Phys. Rev. Lett. 62, 921 (1989).Google Scholar
23 Amar, J.G. and Family, F., elsewhere in this volume.Google Scholar
24 Stroscio, J.A., Pierce, D.T., and Dragoset, R.A., Phys. Rev. Lett. 70, 3615 (1993).Google Scholar